Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There has been growing interest in developing ubiquitous technologies to analyze adult-child speech in naturalistic settings such as free play in order to support children's social and academic development, language acquisition, and parent-child interactions. However, these technologies often rely on off-the-shelf speech processing tools that have not been evaluated on child speech or child-directed adult speech, whose unique characteristics might result in significant performance gaps when using models trained on adult speech. This work introduces the Playlogue dataset containing over 33 hours of long-form, naturalistic, play-based adult-child conversations from three different corpora of preschool-aged children. Playlogue enables researchers to train and evaluate speaker diarization and automatic speech recognition models on child-centered speech. We demonstrate the lack of generalizability of existing state-of-the-art models when evaluated on Playlogue, and show how fine-tuning models on adult-child speech mitigates the performance gap to some extent but still leaves considerable room for improvement. We further annotate over 5 hours of the Playlogue dataset with 8668 validated adult and child speech act labels, which can be used to train and evaluate models to provide clinically relevant feedback on parent-child interactions. We investigate the performance of state-of-the-art language models at automatically predicting these speech act labels, achieving significant accuracy with simple chain-of-thought prompting or minimal fine-tuning. We use inhome pilot data to validate the generalizability of models trained on Playlogue, demonstrating its utility in improving speech and language technologies for child-centered conversations. The Playlogue dataset is available for download at https://huggingface.co/datasets/playlogue/playlogue-v1.more » « lessFree, publicly-accessible full text available November 21, 2025
-
Long-term and high-dose prescription opioid use places individuals at risk for opioid misuse, opioid use disorder (OUD), and overdose. Existing methods for monitoring opioid use and detecting misuse rely on self-reports, which are prone to reporting bias, and toxicology testing, which may be infeasible in outpatient settings. Although wearable technologies for monitoring day-to-day health metrics have gained significant traction in recent years due to their ease of use, flexibility, and advancements in sensor technology, their application within the opioid use space remains underexplored. In the current work, we demonstrate that oral opioid administrations can be detected using physiological signals collected from a wrist sensor. More importantly, we show that models informed by opioid pharmacokinetics increase reliability in predicting the timing of opioid administrations. Forty-two individuals who were prescribed opioids as a part of their medical treatment in-hospital and after discharge were enrolled. Participants wore a wrist sensor throughout the study, while opioid administrations were tracked using electronic medical records and self-reports. We collected 1,983 hours of sensor data containing 187 opioid administrations from the inpatient setting and 927 hours of sensor data containing 40 opioid administrations from the outpatient setting. We demonstrate that a self-supervised pre-trained model, capable of learning the canonical time series of plasma concentration of the drug derived from opioid pharmacokinetics, can reliably detect opioid administration in both settings. Our work suggests the potential of pharmacokinetic-informed, data-driven models to objectively detect opioid use in daily life.more » « less
-
Stress impacts our physical and mental health as well as our social life. A passive and contactless indoor stress monitoring system can unlock numerous important applications such as workplace productivity assessment, smart homes, and personalized mental health monitoring. While the thermal signatures from a user’s body captured by a thermal camera can provide important information about the “fight-flight” response of the sympathetic and parasympathetic nervous system, relying solely on thermal imaging for training a stress prediction model often lead to overfitting and consequently a suboptimal performance. This paper addresses this challenge by introducing ThermaStrain, a novel co-teaching framework that achieves high-stress prediction performance by transferring knowledge from the wearable modality to the contactless thermal modality. During training, ThermaStrain incorporates a wearable electrodermal activity (EDA) sensor to generate stress-indicative representations from thermal videos, emulating stress-indicative representations from a wearable EDA sensor. During testing, only thermal sensing is used, and stress-indicative patterns from thermal data and emulated EDA representations are extracted to improve stress assessment. The study collected a comprehensive dataset with thermal video and EDA data under various stress conditions and distances. ThermaStrain achieves an F1 score of 0.8293 in binary stress classification, outperforming the thermal-only baseline approach by over 9%. Extensive evaluations highlight ThermaStrain’s effectiveness in recognizing stress-indicative attributes, its adaptability across distances and stress scenarios, real-time executability on edge platforms, its applicability to multi-individual sensing, ability to function on limited visibility and unfamiliar conditions, and the advantages of its co-teaching approach. These evaluations validate ThermaStrain’s fidelity and its potential for enhancing stress assessment.more » « less
An official website of the United States government

Full Text Available