skip to main content

Title: Octopus-inspired deception and signaling systems from an exceptionally-stable acene variant

Multifunctional platforms that can dynamically modulate their color and appearance have attracted attention for applications as varied as displays, signaling, camouflage, anti-counterfeiting, sensing, biomedical imaging, energy conservation, and robotics. Within this context, the development of camouflage systems with tunable spectroscopic and fluorescent properties that span the ultraviolet, visible, and near-infrared spectral regions has remained exceedingly challenging because of frequently competing materials and device design requirements. Herein, we draw inspiration from the unique blue rings of theHapalochlaena lunulataoctopus for the development of deception and signaling systems that resolve these critical challenges. As the active material, our actuator-type systems incorporate a readily-prepared and easily-processable nonacene-like molecule with an ambient-atmosphere stability that exceeds the state-of-the-art for comparable acenes by orders of magnitude. Devices from this active material feature a powerful and unique combination of advantages, including straightforward benchtop fabrication, competitive baseline performance metrics, robustness during cycling with the capacity for autonomous self-repair, and multiple dynamic multispectral operating modes. When considered together, the described exciting discoveries point to new scientific and technological opportunities in the areas of functional organic materials, reconfigurable soft actuators, and adaptive photonic systems.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Thermal radiation from a black body increases with the fourth power of absolute temperature (T4), an effect known as the Stefan–Boltzmann law. Typical materials radiate heat at a portion of this limit, where the portion, called integrated emissivity (εint), is insensitive to temperature (|dεint/dT| ≈ 10−4°C–1). The resultant radiance bound by theT4law limits the ability to regulate radiative heat. Here, an unusual material platform is shown in which εintcan be engineered to decrease in an arbitrary manner near room temperature (|dεint/dT| ≈ 8 × 10−3°C–1), enabling unprecedented manipulation of infrared radiation. As an example, εintis programmed to vary with temperature as the inverse ofT4, precisely counteracting theT4dependence; hence, thermal radiance from the surface becomes temperature‐independent, allowing the fabrication of flexible and power‐free infrared camouflage with unique advantage in performance stability. The structure is based on thin films of tungsten‐doped vanadium dioxide where the tungsten fraction is judiciously graded across a thickness less than the skin depth of electromagnetic screening.

    more » « less
  2. Abstract

    In snakes, the skin serves for protection, camouflage, visual signaling, locomotion, and its ability to stretch facilitates large prey ingestion. The flying snakes of the genusChrysopeleaare capable of jumping and gliding through the air, requiring additional functional demands: its skin must accommodate stretch in multiple directions during gliding and, perhaps more importantly, during high‐speed, direct‐impact landing. Is the skin of flying snakes specialized for gliding? Here, we characterized the material properties of the skin ofChrysopelea ornataand compared them with two nongliding species of colubrid snakes,Thamnophis sirtalisandPantherophis guttatus, as well as with previously published values. The skin was examined using uniaxial tensile testing to measure stresses, and digital image correlation methods to determine strains, yielding metrics of strength, elastic modulus, strain energy, and extensibility. To test for loading orientation effects, specimens were tested from three orientations relative to the snake's long axis: lateral, circumferential, and ventral. Specimens were taken from two regions of the body, pre‐ and pos‐tpyloric, to test for regional effects related to the ingestion of large prey. In comparison withT. sirtalisandP. guttatus,C. ornataexhibited higher post‐pyloric and lower pre‐pyloric extensibility in circumferential specimens. However, overall there were few differences in skin material properties ofC. ornatacompared to other species, both within and across studies, suggesting that the skin of flying snakes is not specialized for gliding locomotion. Surprisingly, circumferential specimens demonstrated lower strength and extensibility in pre‐pyloric skin, suggesting less regional specialization related to large prey.

    more » « less
  3. Abstract Objectives

    Hair (i.e., pelage/fur) is a salient feature of primate (including human) diversity and evolution—serving functions tied to thermoregulation, protection, camouflage, and signaling—but wild primate pelage evolution remains relatively understudied. Specifically, assessing multiple hypotheses across distinct phylogenetic scales is essential but is rarely conducted. We examine whole body hair color and density variation across Indriidae (Avahi,Indri,Propithecus)—a lineage that, like humans, exhibits vertical posture (i.e., their whole bodies are vertical to the sun).

    Materials and methods

    Our analyses consider multiple phylogenetic scales (family‐level, genus‐level) and hypotheses (e.g., Gloger's rule, the body cooling hypotheses). We obtain hair color and density from museum and/or wild animals, opsin genotypes from wild animals, and climate data from WorldClim. To analyze our data, we use phylogenetic generalized linear mixed models (PGLMM) using Markov chain Monte Carlo algorithms.


    Our results show that across the Indriidae family, darker hair is typical in wetter regions. However, withinPropithecus, dark black hair is common in colder forest regions. Results also show pelage redness increases in populations exhibiting enhanced color vision. Lastly, we find follicle density on the crown and limbs increases in dry and open environments.


    This study highlights how different selective pressures across distinct phylogenetic scales have likely acted on primate hair evolution. Specifically, our data acrossPropithecusmay implicate thermoregulation and is the first empirical evidence of Bogert's rule in mammals. Our study also provides rare empirical evidence supporting an early hypothesis on hominin hair evolution.

    more » « less
  4. Abstract

    Combined advances in material science, mechanical engineering, and electrical engineering form the foundations of thin, soft electronic/optoelectronic platforms that have unique capabilities in wireless monitoring and control of various biological processes in cells, tissues, and organs. Miniaturized, stretchable antennas represent an essential link between such devices and external systems for control, power delivery, data processing, and/or communication. Applications typically involve a demanding set of considerations in performance, size, and stretchability. Some of the most effective strategies rely on unusual materials such as liquid metals, nanowires, and woven textiles or on optimally configured 2D/3D structures such as serpentines and helical coils of conventional materials. In the best cases, the performance metrics of small, stretchable, radio frequency (RF) antennas realized using these strategies compare favorably to those of traditional devices. Examples range from dipole, monopole, and patch antennas for far‐field RF operation, to magnetic loop antennas for near‐field communication (NFC), where the key parameters include operating frequency,Qfactor, radiation pattern, and reflection coefficientS11across a range of mechanical deformations and cyclic loads. Despite significant progress over the last several years, many challenges and associated research opportunities remain in the development of high‐efficiency antennas for biointegrated electronic/optoelectronic systems.

    more » « less
  5. Abstract

    Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories.

    more » « less