skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Skeleton-based Adaptive Visual Servoing for Control of Robotic Manipulators in Configuration Space
This paper presents a novel visual servoing method that controls a robotic manipulator in the configuration space as opposed to the classical vision-based control methods solely focusing on the end effector pose. We first extract the robot's shape from depth images using a skeletonization algorithm and represent it using parametric curves. We then adopt an adaptive visual servoing scheme that estimates the Jacobian online relating the changes of the curve parameters and the joint velocities. The proposed scheme does not only enable controlling a manipulator in the configuration space, but also demonstrates a better transient response while converging to the goal configuration compared to the classical adaptive visual servoing methods. We present simulations and real robot experiments that demonstrate the capabilities of the proposed method and analyze its performance, robustness, and repeatability compared to the classical algorithms.  more » « less
Award ID(s):
1900953 1928506
PAR ID:
10481953
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN:
2153-0866
ISBN:
978-1-6654-7927-1
Page Range / eLocation ID:
2182 to 2189
Subject(s) / Keyword(s):
Vision-based control, keypoint tracking, visual servoing
Format(s):
Medium: X
Location:
Kyoto, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a visual servoing method for controlling a robot in the configuration space by purely using its natural features. We first created a data collection pipeline that uses camera intrinsics, extrinsics, and forward kinematics to generate 2D projections of a robot's joint locations (keypoints) in image space. Using this pipeline, we are able to collect large sets of real-robot data, which we use to train realtime keypoint detectors. The inferred keypoints from the trained model are used as control features in an adaptive visual servoing scheme that estimates, in runtime, the Jacobian relating the changes of the keypoints and joint velocities. We compared the 2D configuration control performance of this method to the skeleton-based visual servoing method (the only other algorithm for purely vision-based configuration space visual servoing), and demonstrated that the keypoints provide more robust and less noisy features, which result in better transient response. We also demonstrate the first vision-based 3D configuration space control results in the literature, and discuss its limitations. Our data collection pipeline is available at https://github.com/JaniC-WPI/KPDataGenerator.git which can be utilized to collect image datasets and train realtime keypoint detectors for various robots and environments. 
    more » « less
  2. The advances in deep reinforcement learning re- cently revived interest in data-driven learning based approaches to navigation. In this paper we propose to learn viewpoint invariant and target invariant visual servoing for local mobile robot navigation; given an initial view and the goal view or an image of a target, we train deep convolutional network controller to reach the desired goal. We present a new architecture for this task which rests on the ability of establishing correspondences between the initial and goal view and novel reward structure motivated by the traditional feedback control error. The advantage of the proposed model is that it does not require calibration and depth information and achieves robust visual servoing in a variety of environments and targets without any parameter fine tuning. We present comprehensive evaluation of the approach and comparison with other deep learning architectures as well as classical visual servoing methods in visually realistic simulation environment [1]. The presented model overcomes the brittleness of classical visual servoing based methods and achieves significantly higher generalization capability compared to the previous learning approaches. 
    more » « less
  3. This paper presents a novel strategy to train keypoint detection models for robotics applications. Our goal is to develop methods that can robustly detect and track natural features on robotic manipulators. Such features can be used for vision-based control and pose estimation purposes, when placing artificial markers (e.g. ArUco) on the robot’s body is not possible or practical in runtime. Prior methods require accurate camera calibration and robot kinematic models in order to label training images for the keypoint locations. In this paper, we remove these dependencies by utilizing inpainting methods: In the training phase, we attach ArUco markers along the robot’s body and then label the keypoint locations as the center of those markers. We, then, use an inpainting method to reconstruct the parts of the robot occluded by the ArUco markers. As such, the markers are artificially removed from the training images, and labeled data is obtained to train markerless keypoint detection algorithms without the need for camera calibration or robot models. Using this approach, we trained a model for realtime keypoint detection and used the inferred keypoints as control features for an adaptive visual servoing scheme. We obtained successful control results with this fully model-free control strategy, utilizing natural robot features in the runtime and not requiring camera calibration or robot models in any stage of this process. 
    more » « less
  4. null (Ed.)
    In this paper, we study the analytical and experimental control of a seven degrees-of-freedom (7DOF) robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method. 
    more » « less
  5. null (Ed.)
    In this paper, we study the analytical and experimental control of a 7-DOF robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7-DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method. 
    more » « less