Bladder cancer (BC) is frequent cancer affecting the urinary tract and is one of the most prevalent malignancies worldwide. No biomarkers that can be used for effective monitoring of therapeutic interventions for this cancer have been identified to date. This study investigated polar metabolite profiles in urine samples from 100 BC patients and 100 normal controls (NCs) using nuclear magnetic resonance (NMR) and two methods of high- resolution nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS). Five urine metabolites were identified and quantified using NMR spectroscopy to be potential indicators of bladder cancer. Twenty-five LDI-MS-detected compounds, predominantly peptides and lipids, distinguished urine samples from BC and NCs individuals. Level changes of three characteristic urine metabolites enabled BC tumor grades to be distinguished, and ten metabolites were reported to correlate with tumor stages. Receiver-Operating Characteristics analysis showed high predictive power for all three types of metabolomics data, with the area under the curve (AUC) values greater than 0.87. These findings suggest that metabolite markers identified in this study may be useful for the non-invasive detection and monitoring of bladder cancer stages and grades.
more »
« less
Metabolomic and elemental profiling of blood serum in bladder cancer
Bladder cancer (BC) is one of the most frequently diagnosed types of urinary cancer. Despite advances in treatment methods, no specific biomarkers are currently in use. Targeted and untargeted profiling of metabolites and elements of human blood serum from 100 BC patients and the same number of normal controls (NCs), with external validation, was attempted using three analytical methods, i.e., nuclear magnetic resonance, gold and silver-109 nanoparticle-based laser desorption/ionization mass spec- trometry (LDI-MS), and inductively coupled plasma optical emission spectrometry (ICP-OES). All results were subjected to multivariate statistical analysis. Four potential serum biomarkers of BC, namely, iso- butyrate, pyroglutamate, choline, and acetate, were quantified with proton nuclear magnetic resonance, which had excellent predictive ability as judged by the area under the curve (AUC) value of 0.999. Two elements, Li and Fe, were also found to distinguish between cancer and control samples, as judged from ICP-OES data and AUC of 0.807 (in validation set). Twenty-five putatively identified compounds, mostly related to glycans and lipids, differentiated BC from NCs, as detected using LDI-MS. Five serum metab- olites were found to discriminate between tumor grades and nine metabolites between tumor stages. The results from three different analytical platforms demonstrate that the identified distinct serum metabolites and metal elements have potential to be used for noninvasive detection, staging, and grading of BC.
more »
« less
- Award ID(s):
- 2018388
- PAR ID:
- 10482186
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Pharmaceutical Analysis
- Volume:
- 12
- Issue:
- 6
- ISSN:
- 2095-1779
- Page Range / eLocation ID:
- 889 to 900
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tumor subtype and menopausal status are strong predictors of breast cancer (BC) prognosis. We aimed to find and validate subtype- or menopausal-status-specific changes in tumor DNA methylation (DNAm) associated with all-cause mortality or BC progression. Associations between site-specific tumor DNAm and BC prognosis were estimated among The Cancer Genome Atlas participants ( n = 692) with Illumina Infinium HumanMethylation450 BeadChip array data. All-cause mortality and BC progression were modeled using Cox proportional hazards models stratified by tumor subtypes, adjusting for age, race, stage, menopausal status, tumor purity, and cell type proportion. Effect measure modification by subtype and menopausal status were evaluated by incorporating a product term with DNAm. Site-specific inference was used to identify subtype- or menopausal-status-specific differentially methylated regions (DMRs) and functional pathways. The validation of the results was carried out on an independent dataset (GSE72308; n = 180). We identified a total of fifteen unique CpG probes that were significantly associated ( P ≤ 1 × 10 − 7 with survival outcomes in subtype- or menopausal-status-specific manner. Seven probes were associated with overall survival (OS) or progression-free interval (PFI) for women with luminal A subtype, and four probes were associated with PFI for women with luminal B subtype. Five probes were associated with PFI for post-menopausal women. A majority of significant probes showed a lower risk of OS or BC progression with higher DNAm. We identified subtype- or menopausal-status-specific DMRs and functional pathways of which top associated pathways differed across subtypes or menopausal status. None of significant probes from site-specific analyses met genome-wide significant level in validation analyses while directions and magnitudes of coefficients showed consistent pattern. We have identified subtype- or menopausal-status-specific DNAm biomarkers, DMRs and functional pathways associated with all-cause mortality or BC progression, albeit with limited validation. Future studies with larger independent cohort of non-post-menopausal women with non-luminal A subtypes are warranted for identifying subtype- and menopausal-status-specific DNAm biomarkers for BC prognosis.more » « less
-
Abstract Breast cancer is the most common cancer detected in women and current screening methods for the disease are not sensitive. Volatile organic compounds (VOCs) include endogenous metabolites that provide information about health and disease which might be useful to develop a better screening method for breast cancer. The goal of this study was to classify mice with and without tumors and compare tumors localized to the mammary pad and tumor cells injected into the iliac artery by differences in VOCs in urine. After 4T1.2 tumor cells were injected into BALB/c mice either in the mammary pad or into the iliac artery, urine was collected, VOCs from urine headspace were concentrated by solid phase microextraction and results were analyzed by gas chromatography-mass spectrometry quadrupole time-of-flight. Multivariate and univariate statistical analyses were employed to find potential biomarkers for breast cancer and metastatic breast cancer in mice models. A set of six VOCs classified mice with and without tumors with an area under the receiver operator characteristic (ROC AUC) of 0.98 (95% confidence interval [0.85, 1.00]) via five-fold cross validation. Classification of mice with tumors in the mammary pad and iliac artery was executed utilizing a different set of six VOCs, with a ROC AUC of 0.96 (95% confidence interval [0.75, 1.00]).more » « less
-
null (Ed.)Nuclear Magnetic Resonance (NMR) spectroscopy is a quantitative analytical tool commonly utilized for metabolomics analysis. Quantitative NMR (qNMR) is a field of NMR spectroscopy dedicated to the measurement of analytes through signal intensity and its linear relationship with analyte concentration. Metabolomics-based NMR exploits this quantitative relationship to identify and measure biomarkers within complex biological samples such as serum, plasma, and urine. In this review of quantitative NMR-based metabolomics, the advancements and limitations of current techniques for metabolite quantification will be evaluated as well as the applications of qNMR in biomedical metabolomics. While qNMR is limited by sensitivity and dynamic range, the simple method development, minimal sample derivatization, and the simultaneous qualitative and quantitative information provide a unique landscape for biomedical metabolomics, which is not available to other techniques. Furthermore, the non-destructive nature of NMR-based metabolomics allows for multidimensional analysis of biomarkers that facilitates unambiguous assignment and quantification of metabolites in complex biofluids.more » « less
An official website of the United States government

