skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectra of some weighted composition operators on the ball
We find sufficient conditions for a self-map of the unit ball to converge uniformly under iteration to a fixed point or idempotent on the entire ball. Using these tools, we establish spectral containments for weighted composition operators on Hardy and Bergman spaces of the ball. When the compositional symbol is in the Schur–Agler class, we establish the spectral radii of these weighted composition operators.  more » « less
Award ID(s):
1722563
PAR ID:
10482205
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Acta Scientiarum Mathematicarum
Volume:
89
Issue:
3-4
ISSN:
0001-6969
Page Range / eLocation ID:
373 to 387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider sub-Laplacians in open bounded sets in a homogeneous Carnot group and study their spectral properties. We prove that these operators have a pure point spectrum and prove the existence of the spectral gap. In addition, we give applications to the small ball problem for a hypoelliptic Brownian motion and the large time behavior of the heat content in a regular domain. 
    more » « less
  2. We study half-line Schrödinger operators with locally H^{-1} potentials. In the first part, we focus on a general spectral theoretic framework for such operators, including a Last-Simon-type description of the absolutely continuous spectrum and sufficient conditions for different spectral types. In the second part, we focus on potentials which are decaying in a local H^{-1} sense; we establish a spectral transition between short-range and long-range potentials and an ell^2 spectral transition for sparse singular potentials. The regularization procedure used to handle distributional potentials is also well suited for controlling rapid oscillations in the potential; thus, even within the class of smooth potentials, our results apply in situations which would not classically be considered decaying or even bounded. 
    more » « less
  3. Abstract Previously, spectra of certain weighted composition operators W ѱ, φ on H 2 were determined under one of two hypotheses: either φ converges under iteration to the Denjoy-Wolff point uniformly on all of 𝔻 rather than simply on compact subsets, or φ is “essentially linear fractional.” We show that if φ is a quadratic self-map of 𝔻 of parabolic type, then the spectrum of W ѱ, φ can be found when these maps exhibit both of the aforementioned properties, and we determine which symbols do so. 
    more » « less
  4. Nonlocal vector calculus, which is based on the nonlocal forms of gradient, divergence, and Laplace operators in multiple dimensions, has shown promising applications in fields such as hydrology, mechanics, and image processing. In this work, we study the analytical underpinnings of these operators. We rigorously treat compositions of nonlocal operators, prove nonlocal vector calculus identities, and connect weighted and unweighted variational frameworks. We combine these results to obtain a weighted fractional Helmholtz decomposition which is valid for sufficiently smooth vector fields. Our approach identifies the function spaces in which the stated identities and decompositions hold, providing a rigorous foundation to the nonlocal vector calculus identities that can serve as tools for nonlocal modeling in higher dimensions. 
    more » « less
  5. We establish dispersive estimates and local decay estimates for the time evolution of non-self-adjoint matrix Schrödinger operators with threshold resonances in one space dimension. In particular, we show that the decay rates in the weighted setting are the same as in the regular case after subtracting a finite rank operator corresponding to the threshold resonances. Such matrix Schrödinger operators naturally arise from linearizing a focusing nonlinear Schrödinger equation around a solitary wave. It is known that the linearized operator for the 1D focusing cubic NLS equation exhibits a threshold resonance. We also include an observation of a favorable structure in the quadratic nonlinearity of the evolution equation for perturbations of solitary waves of the 1D focusing cubic NLS equation. 
    more » « less