skip to main content


This content will become publicly available on August 20, 2024

Title: Design Considerations for 3RRR Parallel Robots With Lightweight, Approximate Static-Balancing
Abstract

Balancing parallel robots throughout their workspace while avoiding the use of balancing masses and respecting design practicality constraints is difficult. Medical robots demand such compact and lightweight designs. This paper considers the difficult task of achieving optimal approximate balancing of a parallel robot throughout a desired task-based dexterous workspace using balancing springs only. While it is possible to achieve perfect balancing in a path, only approximate balancing may be achieved without the addition of balancing masses. Design considerations for optimal robot base placement and the effects of placement of torsional balancing springs are presented. Using a modal representation for the balancing torque requirements, we use recent results on the design of wire-wrapped cam mechanisms to achieve balancing throughout a task-based workspace. A simulation study shows that robot base placement can have a detrimental effect on the attainability of a practical design solution for static balancing. We also show that optimal balancing using torsional springs is best achieved when all springs are at the actuated joints and that the wire-wrapped cam design can significantly improve the performance of static balancing. The methodology presented in this paper provides practical design solutions that yield simple, lightweight and compact designs suitable for medical applications where such traits are paramount.

 
more » « less
Award ID(s):
1734461
NSF-PAR ID:
10482294
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
Format(s):
Medium: X
Location:
Boston, Massachusetts, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Collaborative robots must simultaneously be safe enough to operate in close proximity to human operators and powerful enough to assist users in industrial tasks such as lifting heavy equipment. The requirement for safety necessitates that collaborative robots are designed with low-powered actuators. However, some industrial tasks may require the robot to have high payload capacity and/or long reach. For collaborative robot designs to be successful, they must find ways of addressing these conflicting design requirements. One promising strategy for navigating this tradeoff is through the use of static balancing mechanisms to offset the robot’s self-weight, thus enabling the selection of low-powered actuators. In this paper, we introduce a novel, two degrees-of-freedom static balancing mechanism based on spring-loaded, wire-wrapped cams. We also present an optimization-based cam design method that guarantees the cams stay convex, ensures the springs stay below their extensions limits, and minimizes sensitivity to unmodeled deviations from the nominal spring constant. Additionally, we present a model of the effect of friction between the wire and the cam. Lastly, we show experimentally that the torque generated by the cam mechanism matches the torque predicted in our modeling approach. Our results also suggest that the effects of wire-cam friction are significant for non-circular cams.

     
    more » « less
  2. Elastic actuation can improve human-robot interaction and energy efficiency for wearable robots. Previous work showed that the energy consumption of series elastic actuators can be a convex function of the series spring compliance. This function is useful to optimally select the series spring compliance that reduces the motor energy consumption. However, series springs have limited influence on the motor torque, which is a major source of the energy losses due to the associated Joule heating. Springs in parallel to the motor can significantly modify the motor torque and therefore reduce Joule heating, but it is unknown how to design springs that globally minimize energy consumption for a given motion of the load. In this work, we introduce the stiffness design of linear and nonlinear parallel elastic actuators via convex optimization. We show that the energy consumption of parallel elastic actuators is a convex function of the spring stiffness and compare the energy savings with that of optimal series elastic actuators. We analyze robustness of the solution in simulation by adding uncertainty of 20% of the RMS load kinematics and kinetics for the ankle, knee, and hip movements for level-ground human walking. When the winding Joule heating losses are dominant with respect to the viscous losses, our optimal PEA designs outperform SEA designs by further reducing the motor energy consumption up to 63%. Comparing to the linear PEA designs, our nonlinear PEA designs further reduced the motor energy consumption up to 31%. From our convex formulation, our global optimal nonlinear parallel elastic actuator designs give two different elongation-torque curves for positive and negative elongation, suggesting a clutching mechanism for the final implementation. In addition, the different torque-elongation profiles for positive and negative elongation for nonlinear parallel elastic actuators can cause sensitivity of the energy consumption to changes in the nominal load trajectory. 
    more » « less
  3. null (Ed.)
    Abstract An extensible continuum manipulator (ECM) has specific advantages over its nonextensible counterparts. For instance, in certain applications, such as minimally invasive surgery or pipe inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and a larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension, etc. This article proposes a new way to achieve this additional motion degree-of-freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator can achieve tail-like spatial bending and worm-like extension at the same time. Simplified kinematic analyses are conducted to estimate the workspace and the motion nonuniformity. A proof-of-concept prototype was integrated to verify the mechanism’s mobility and to evaluate the kinematic model accuracy. The results show that the proposed mechanism achieved the desired mobilities with a maximum extension ratio of 32.2% and a maximum bending angle of 80 deg. 
    more » « less
  4. null (Ed.)
    Nonlinear systems leveraging the effects of negative stiffness can exhibit beneficial qualities for passive seismic mitigation in structures. Such systems can be achieved by placing nonlinear devices displaying negative stiffness in parallel with linear positive stiffness systems such as a structure or spring. This thesis presents research into two such systems: (i) a device which causes apparent weakening in a structure subjected to horizontal ground motions and (ii) an isolation system to protect building contents from vertical seismic effects. Apparent weakening is the softening of a structure’s apparent stiffness by adding negative stiffness to the overall system via negative stiffness devices. Apparent weakening is an elastic effect that has the benefit of reducing the peak accelerations and base shears induced in a structure due to a seismic event without reducing the main structural strength. The smooth negative stiffness device (SNSD) presented in this thesis consists of cables, pulleys, and extension springs. A nonlinear mathematical model of the load-deflection behavior of the SNSD was developed and used to determine the optimal geometry for such a device. A prototype device was designed and fabricated for installation in a bench-scale experimental structure, which was characterized through static and dynamic tests. A numerical study was also conducted on two other SNSD configurations designed to achieve different load-deflection relations for use in an inelastic model building subject to a suite of historic and synthetic ground motions. In both the experimental prototype and the numerical study, the SNSDs successfully produced apparent weakening, effectively reducing accelerations and base shears of the structures. The buckled-strut vertical isolation system (BSVIS) presented in this thesis combines the non-linear behavior of a laterally-loaded buckled strut with a linear spring. The lateral load-deflection relation for a buckled strut, which is nonlinear and displays negative stiffness, was investigated for various conditions to two- and three-term approximations of the deflected shape of a strut. This relation and the linear positive effect of a spring were superimposed to give the load-deflection relation of a BSVIS. An experimental prototype was fabricated and subjected to static tests. These tests confirmed the validity of the model and the effectiveness of adding a spring in parallel with a buckled strut to achieve isolation-level stiffness. Based on the theoretical and experimental findings, a design guide is proposed for the engineering of a BSVIS to protect a payload from vertical seismic content. 
    more » « less
  5. null (Ed.)
    Complex service robotics scenarios entail unpredictable task appearance both in space and time. This requires robots to continuously relocate and imposes a trade-off between motion costs and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots can be exploited to service different areas in parallel. An efficient deployment needs to continuously determine the best allocation according to the actual service needs, while also taking relocation costs into account when such allocation must be modified. For large scale problems, centrally predicting optimal allocations and movement paths for each robot quickly becomes infeasible. Instead, decentralized solutions are needed that allow the robotic system to self-organize and adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous approach to simultaneous task assignment and path planning for robot swarms, which combines a bio-inspired collective decision-making process for the allocation of robots to areas to be serviced, and a search-based path planning approach for the actual routing of robots towards tasks to be executed. Task allocation exploits a hierarchical representation of the workspace, supporting the robot deployment to the areas that mostly require service. We investigate four realistic environments of increasing complexity, where each task requires a robot to reach a location and work for a specific amount of time. The proposed approach improves over two different baseline algorithms in specific settings with statistical significance, while showing consistently good results overall. Moreover, the proposed solution is robust to limited communication and robot failures. 
    more » « less