skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Crustal Anisotropy from the Birefringence of P-to-S Converted Waves: Bias Associated with P-Wave Anisotropy
Many researchers have used the birefringence of P‑to‑S converted waves from the Moho discontinuity to constrain the anisotropy of Earth’s crust. However, this practice ignores the substantial influence that anisotropy has on the initial amplitude of the converted wave, which adds to the splitting acquired during its propagation from Moho to the seismometer. We find that large variations in Ps birefringence estimates with back-azimuth occur theoretically in the presence of P‑wave anisotropy, which normally accompanies S‑wave anisotropy. The variations are largest for crustal anisotropy with a tilted axis of symmetry, a geometry that is often neglected in birefringence interpretations, but is commonly found in Earth’s crust. We simulated globally-distributed P‑coda datasets for 36 distinct 4‑layer crustal models with combinations of elliptical shear anisotropy or compressional anisotropy, and also incorporated the higher-order anisotropic Backus parameter C. We tested both horizontal and tilted symmetry-axis geometries and tested the birefringence tradeoff associated with Ps converted phases at the top and bottom of a thin high‑ or low‑velocity basal layer. We computed composite receiver functions (RFs) with harmonic regression over back azimuth, using multipletaper correlation with moveout corrections for the epicentral distances of 471 events, to simulate a realistic data set. We estimate Ps birefringence from the radial and transverse RFs, a strategy that is similar to previous studies. We find that Ps splitting can be a useful indicator of bulk crustal anisotropy only under restricted circumstance, either in media with no compressional anisotropy, or if the symmetry axis is horizontal throughout. In other, more-realistic cases, the inferred fast polarization of Ps birefringence estimated from synthetic RFs tends either to drift with back-azimuth, form weak penalty-function minima, or return splitting times that depend on the thickness of an anisotropic layer, rather than the birefringence accumulated within it.    more » « less
Award ID(s):
1818792
PAR ID:
10482333
Author(s) / Creator(s):
; ;
Publisher / Repository:
Istituto Nazionale di Geofisica e Vulcanologia (INGV) , Italy
Date Published:
Journal Name:
Annals of Geophysics
Volume:
66
Issue:
2
ISSN:
1593-5213
Page Range / eLocation ID:
SE205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY The vast majority of teleseismic XKS (including SKS, SKKS and PKS) shear wave splitting studies interpret the observed splitting parameters (fast orientation and splitting time) based on the assumption of a spatially invariant anisotropy structure in the vicinity of a recording station. For such anisotropy structures the observed splitting parameters are either independent of the arriving azimuth of the seismic ray paths if the medium traversed by the ray paths can be represented by a single layer of anisotropy with a horizontal axis of symmetry (i.e. simple anisotropy), or demonstrate a periodic variation with respect to the arriving azimuth for a more complicated structure of anisotropy (e.g. multiple layers with a horizontal axis of symmetry, or a single layer with a dipping axis). When a recording station is located near the boundary of two or more regions with different anisotropy characteristics, the observed splitting parameters are dependent on the location of the ray piercing points. Such a piercing-point dependence is clearly observed using a total of 360 pairs of XKS splitting parameters at three stations situated near the northeastern edge of the Sichuan Basin in central China. For a given station, the fast orientations differ as much as 90°, and the azimuthal variation of the fast orientations lacks a 90° or 180° periodicity which is expected for double-layered or dipping axis anisotropy. The observed splitting parameters from the three stations are spatially most consistent when they are projected at a depth of ∼250 km, and can be explained by shear strain associated with the absolute plate motion and mantle flow deflected by the cone-shaped lithospheric root of the Sichuan Basin. 
    more » « less
  2. Abstract This study presents an azimuthally anisotropic shear wave velocity model of the crust and uppermost mantle beneath Alaska, based on Rayleigh wave phase speed observations from 10 to 80 s period recorded at more than 500 broadband stations. We test the hypothesis that a model composed of two homogeneous layers of anisotropy can explain these measurements. This “Two‐Layer Model” confines azimuthal anisotropy to the brittle upper crust along with the uppermost mantle from the Moho to 200 km depth. This model passes the hypothesis test for most of the region of study, from which we draw two conclusions. (a) The data are consistent with crustal azimuthal anisotropy being dominantly controlled by deformationally aligned cracks and fractures in the upper crust undergoing brittle deformation. (b) The data are also consistent with the uppermost mantle beneath Alaska and surroundings experiencing vertically coherent deformation. The model resolves several prominent features. (1) In the upper crust, fast directions are principally aligned with the orientation of major faults. (2) In the upper mantle, fast directions are aligned with the compressional direction in compressional tectonic domains and with the tensional direction in tensional domains. (3) The mantle fast directions located near the Alaska‐Aleutian subduction zone and the surrounding back‐arc area form a toroidal pattern that is consistent with mantle flow directions predicted by recent geodynamical models. Finally, the mantle anisotropy is remarkably consistent with SKS fast directions, but to fit SKS split times, anisotropy must extend below 200 km depth across most of the study region. 
    more » « less
  3. null (Ed.)
    Two types of surface wave anisotropy are observed regularly by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We show that a new data set of Love and Rayleigh wave isotropic phase speeds and Rayleigh wave azimuthal anisotropy observed within and surrounding eastern Tibet can be explained simultaneously by modeling the crust as a depth-dependent tilted hexagonally symmetric (THS) medium. We specify the THS medium with depth-dependent hexagonally symmetric elastic tensors tilted and rotated through dip and strike angles and estimate these quantities using a Bayesian Monte Carlo inversion to produce a 3-D model of the crust and uppermost mantle on a 0.5° × 0.5° spatial grid. In the interior of eastern Tibet and in the Yunnan-Guizhou plateau, we infer a steeply dipping THS upper crustal medium overlying a shallowly dipping THS medium in the middle-to-lower crust. Such vertical stratification of anisotropy may reflect a brittle to ductile transition in which shallow fractures and faults control upper crustal anisotropy and the crystal-preferred orientation of anisotropic (perhaps micaceous) minerals governs the anisotropy of the deeper crust. In contrast, near the periphery of the Tibetan Plateau the anisotropic medium is steeply dipping throughout the entire crust, which may be caused by the reorientation of the symmetry axes of deeper crustal anisotropic minerals as crustal flows are rotated near the borders of Tibet. 
    more » « less
  4. Abstract Seismic azimuthal anisotropy characterized by shear wave splitting analyses using teleseismicXKSphases (includingSKS,SKKS, andPKS) is widely employed to constrain the deformation field in the Earth's crust and mantle. Due to the near‐vertical incidence of theXKSarrivals, the resulting splitting parameters (fast polarization orientations and splitting times) have an excellent horizontal but poor vertical resolution, resulting in considerable ambiguities in the geodynamic interpretation of the measurements. Here we useP‐to‐Sconverted phases from the Moho and the 410‐ (d410) and 660‐km (d660) discontinuities to investigate anisotropy layering beneath Southern California. Similarities between the resulting splitting parameters from theXKSandP‐to‐Sconverted phases from thed660 suggest that the lower mantle beneath the study area is azimuthally isotropic. Similarly, significant azimuthal anisotropy is not present in the mantle transition zone on the basis of the consistency between the splitting parameters obtained usingP‐to‐Sconverted phases from thed410 andd660. Crustal anisotropy measurements exhibit a mean splitting time of 0.2 ± 0.1 s and mostly NW‐SE fast orientations, which are significantly different from the dominantly E‐W fast orientations revealed usingXKSandP‐to‐Sconversions from thed410 andd660. Anisotropy measurements using shear waves with different depths of origin suggest that the Earth's upper mantle is the major anisotropic layer beneath Southern California. Additionally, this study demonstrates the effectiveness of applying a set of azimuthal anisotropy analysis techniques to reduce ambiguities in the depth of the source of the observed anisotropy. 
    more » « less
  5. Abstract To systematically investigate seismic azimuthal anisotropy in the Sumatra subduction zone and probe mantle dynamics associated with the subduction of the Australian Plate beneath the Sunda Plate, a total of 169 pairs of teleseismic XKS (including PKS, SKKS, SKS) and 115 pairs of localSsplitting parameters are obtained using broadband seismic data recorded at ~70 stations. Additionally, crustal anisotropy in the overriding Sunda Plate is measured by analyzing the moveout ofP‐to‐Sconversions from the Moho using a sinusoidal function. Comparison between the three sets of anisotropy measurements obtained using shear waves with different depths of origin suggests that (1) the crust of the Sunda Plate is anisotropic with mostly trench‐parallel fast orientations and a mean splitting time of 0.28 ± 0.05 s; (2) the mantle wedge is azimuthally anisotropic with dominantly trench‐parallel fast orientations and splitting times ranging from 0.22 to 0.81 s, which generally increase with the focal depth; and (3) subslab anisotropy is mostly trench‐normal beneath the fore‐arc region with an averaged splitting time of 1.48 ± 0.06 s, and becomes trench‐parallel beneath the arc and back‐arc areas with a mean splitting time of 0.33 ± 0.04 s. The resulting lateral and vertical distributions of anisotropy obtained using splitting of three types of shear waves advocate the presence of an entrained subslab flow that is deflected by the mantle transition zone. The flow enters the mantle wedge through a slab window and flows horizontally parallel to the trench. 
    more » « less