The GEOTRACES program has greatly expanded measurements of dissolved trace metal concentrations across ocean basins, but to understand the behavior and cycling of metals and their impacts on primary productivity, we must understand the chemical forms in which they are present in the environment. Organic ligands play a central role in the speciation and cycling of trace metals in the marine environment, controlling their chemical reactivity and bioavailability. Here, we present an overview of the contributions the GEOTRACES program has made to understanding ocean metal speciation through advancing our knowledge of the distribution, sources, and sinks of metal-binding organic ligands across the global ocean, particularly for iron. Detailed assessments and intercalibration of the speciation methods most commonly applied have allowed integration of metal-binding ligand measurements across datasets. Work to characterize specific ligand groups within the wider pool of dissolved organic matter, along with their sources and sinks, is starting to unravel the role of metal-binding organic ligands in global biogeochemical cycles. Recent advances in complementary analytical techniques using liquid chromatography and mass spectrometry present a molecular picture of metal speciation and bioavailability—and also pose new questions. Moving forward, we need to address knowledge gaps in our understanding of how metal speciation and complexation relates to bioavailability in order to recognize the impacts of ocean metal distributions and cycling on marine productivity and the global carbon cycle.
more »
« less
Metal Organic Complexation in Seawater: Historical Background and Future Directions
The speciation of most biologically active trace metals in seawater is dominated by complexation by organic ligands. This review traces the history of work in this area, from the early observations that showed surprisingly poor recoveries using metal preconcentration protocols to the present day, where advances in mass spectroscopy and stable isotope geochemistry are providing new insights into the structure, origin, fate, and biogeochemical impact of organic ligands. Many long-standing hypotheses about the specific biological origin of ligands such as siderophores in seawater are finally being validated. This work has revealed the complexity of organic complexation, with multiple ligands and, in some cases, timescales of ligand exchange that are much slower than originally thought. The influence of organic complexation on scavenging is now a key parameter in biogeochemical models of biologically essential metals, especially iron. New insights about the sources and sinks of ligands are required to enhance the usefulness of these models. Expected final online publication date for the Annual Review of Marine Science, Volume 16 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
more »
« less
- PAR ID:
- 10482381
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Marine Science
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1941-1405
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. Constraining how the biological pump operated in the past is important for understanding past atmospheric carbon dioxide concentrations and Earth's climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here, we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES‐era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the trace metals that are least sensitive to productivity may be used to track other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth's climate history.more » « less
-
Abstract The chemistry of copper (Cu) in seawater is well known to be dominated by complexation with organic ligands. The prevailing paradigm is that Cu forms strong but labile complexes. Recently, a novel procedure revealed that only a small fraction of dissolved Cu exists as labile complexes. The majority is present as a fraction that is relatively inert on timescales of weeks or more and probably does not participate in coordination exchange reactions, including biologically mediated processes. Samples collected from the 2018 GEOTRACES GP15 cruise show that throughout the interior of the Pacific Ocean, this inert fraction comprises about 90% of the dissolved Cu. Labile Cu accumulates in surface waters, probably arising from photochemical decomposition of the inert fraction. There is also a modest accumulation of labile Cu near deep sea sediments and along the Alaskan shelf and slope. The results have important implications for Cu transport and biological availability. Inert Cu may influence Cu transport throughout the water column and contribute to the linear increase in Cu with depth, a distribution which is hard to explain for a biologically active trace metal. The origins of inert Cu are unknown. It may be produced slowly within the water column on the timescale of meridional overturning circulation. In the Columbia River, between 92% and 98% of the dissolved Cu is in the inert fraction, suggesting a possible terrestrial source of inert Cu to the ocean.more » « less
-
This dataset includes the concentrations of dissolved inorganic macronutrients (phosphate, nitrate plus nitrite (N+N), silicic acid, and nitrite), chlorophyll a and phaeophytin, dissolved trace metals (iron, manganese, nickel, zinc, copper), and labile dissolved nickel, as well as pH and total alkalinity measurements, from discrete depth profile samples collected on the FeOA cruise SKQ202209S on R/V Sikuliaq in the Northeast Pacific from June to July 2022. This project investigates the effects of ocean acidification on the associations between iron and organic ligands in seawater and on iron bioavailability to marine phytoplankton communities. The project used a combination of shipboard incubation experiments and depth profiles to characterize iron speciation and cycling across coastal upwelling, oligotrophic open ocean, and iron-limited subarctic oceanographic regimes in the NE Pacific. Surface seawater was incubated at pH of 8.1, 7.6, and 7.1 with natural iron and with dissolved iron amendments in order to investigate interactions between pH and iron bioavailability across the different regimes. Understanding how pH influences iron and its relationship with ligands provides important information for assessing the impacts of ocean acidification on primary production and biogeochemical processes.more » « less
-
Summary Marine microalgae within seawater and sea ice fuel high‐latitude ecosystems and drive biogeochemical cycles through the fixation and export of carbon, uptake of nutrients, and production and release of oxygen and organic compounds. High‐latitude marine environments are characterized by cold temperatures, dark winters and a strong seasonal cycle. Within this environment a number of diverse and dynamic habitats exist, particularly in association with the formation and melt of sea ice, with distinct microalgal communities that transition with the season. Algal physiology is a crucial component, both responding to the dynamic environment and in turn influencing its immediate physicochemical environment. As high‐latitude oceans shift into new climate regimes the analysis of seasonal responses may provide insights into how microalgae will respond to long‐term environmental change. This review discusses recent developments in our understanding of how the physiology of high‐latitude marine microalgae is regulated over a polar seasonal cycle, with a focus on ice‐associated (sympagic) algae. In particular, physiologies that impact larger scale processes will be explored, with an aim to improve our understanding of current and future ecosystems and biogeochemical cycles.more » « less
An official website of the United States government

