skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scaling laws in enzyme function reveal a new kind of biochemical universality
Significance Known examples of life all share the same core biochemistry going back to the last universal common ancestor (LUCA), but whether this feature is universal to other examples, including at the origin of life or alien life, is unknown. We show how a physics-inspired statistical approach identifies universal scaling laws across biochemical reactions that are not defined by common chemical components but instead, as macroscale patterns in the reaction functions used by life. The identified scaling relations can be used to predict statistical features of LUCA, and network analyses reveal some of the functional principles that underlie them. They are, therefore, prime candidates for developing new theory on the “laws of life” that might apply to all possible biochemistries.  more » « less
Award ID(s):
1840301
PAR ID:
10482597
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
US National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
9
ISSN:
0027-8424
Subject(s) / Keyword(s):
scaling laws biochemical networks astrobiology statistical physics enzymes
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Biogenic volatile organic compounds (VOCs) constitute a significant portion of gas-phase metabolites in modern ecosystems and have unique roles in moderating atmospheric oxidative capacity, solar radiation balance, and aerosol formation. It has been theorized that VOCs may account for observed geological and evolutionary phenomena during the Archaean, but the direct contribution of biology to early non-methane VOC cycling remains unexplored. Here, we provide an assessment of all potential VOCs metabolized by the last universal common ancestor (LUCA). We identify enzyme functions linked to LUCA orthologous protein groups across eight literature sources and estimate the volatility of all associated substrates to identify ancient volatile metabolites. We hone in on volatile metabolites with confirmed modern emissions that exist in conserved metabolic pathways and produce a curated list of the most likely LUCA VOCs. We introduce volatile organic metabolites associated with early life and discuss their potential influence on early carbon cycling and atmospheric chemistry. 
    more » « less
  2. Abstract Comparative genomics and molecular phylogenetics are foundational for understanding biological evolution. Although many studies have been made with the aim of understanding the genomic contents of early life, uncertainty remains. A study by Weiss et al. (Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF. 2016. The physiology and habitat of the last universal common ancestor. Nat Microbiol. 1(9):16116.) identified a number of protein families in the last universal common ancestor of archaea and bacteria (LUCA) which were not found in previous works. Here, we report new research that suggests the clustering approaches used in this previous study undersampled protein families, resulting in incomplete phylogenetic trees which do not reflect protein family evolution. Phylogenetic analysis of protein families which include more sequence homologs rejects a simple LUCA hypothesis based on phylogenetic separation of the bacterial and archaeal domains for a majority of the previously identified LUCA proteins (∼82%). To supplement limitations of phylogenetic inference derived from incompletely populated orthologous groups and to test the hypothesis of a period of rapid evolution preceding the separation of the domains, we compared phylogenetic distances both within and between domains, for thousands of orthologous groups. We find a substantial diversity of interdomain versus intradomain branch lengths, even among protein families which exhibit a single domain separating branch and are thought to be associated with the LUCA. Additionally, phylogenetic trees with long interdomain branches relative to intradomain branches are enriched in information categories of protein families in comparison to those associated with metabolic functions. These results provide a new view of protein family evolution and temper claims about the phenotype and habitat of the LUCA. 
    more » « less
  3. Abstract In this Letter we investigate the dependency with scale of the empirical probability distribution functions (PDF) of Elsasser increments using large sets ofWINDdata (collected between 1995 and 2017) near 1 au. The empirical PDF are compared to the ones obtained from high-resolution numerical simulations of steadily driven, homogeneous reduced MHD turbulence on a 20483rectangular mesh. A large statistical sample of Alfvénic increments is obtained by using conditional analysis based on the solar wind average properties. The PDF tails obtained from observations and numerical simulations are found to have exponential behavior in the inertial range, with an exponential decrement that satisfies power laws of the formαl∝l−μ, wherelis the scale size, withμbetween 0.17 and 0.25 for observations and 0.43 for simulations. PDF tails were extrapolated assuming their exponential behavior extends to arbitrarily large increments in order to determine structure function scaling laws at very high orders. Our results point to potentially universal scaling laws governing the PDF of Elsasser increments and to an alternative approach to investigate high-order statistics in solar wind observations. 
    more » « less
  4. Abstract Here we review and extend the equal fitness paradigm (EFP) as an important step in developing and testing a synthetic theory of ecology and evolution based on energy and metabolism. The EFP states that all organisms are equally fit at steady state, because they allocate the same quantity of energy, ~ 22.4 kJ/g/generation to the production of offspring. On the one hand, the EFP may seem tautological, because equal fitness is necessary for the origin and persistence of biodiversity. On the other hand, the EFP reflects universal laws of life: how biological metabolism – the uptake, transformation and allocation of energy – links ecological and evolutionary patterns and processes across levels of organisation from: (1) structure and function of individual organisms, (2) life history and dynamics of populations, and (3) interactions and coevolution of species in ecosystems. The physics and biology of metabolism have facilitated the evolution of millions of species with idiosyncratic anatomy, physiology, behaviour and ecology but also with many shared traits and tradeoffs that reflect the single origin and universal rules of life. 
    more » « less
  5. We study matching queues with abandonment. The simplest of these is the two-sided queue with servers on one side and customers on the other, both arriving dynamically over time and abandoning if not matched by the time their patience elapses. We identify nonasymptotic and universal scaling laws for the matching loss due to abandonment, which we refer to as the “cost of impatience.” The scaling laws characterize the way in which this cost depends on the arrival rates and the (possibly different) mean patience of servers and customers. Our characterization reveals four operating regimes identified by an operational measure of patience that brings together mean patience and utilization. The four regimes subsume the regimes that arise in asymptotic (heavy-traffic) approximations. The scaling laws, specialized to each regime, reveal the fundamental structure of the cost of impatience and show that its order of magnitude is fully determined by (i) a “winner-take-all” competition between customer impatience and utilization, and (ii) the ability to accumulate inventory on the server side. Practically important is that when servers are impatient, the cost of impatience is, up to an order of magnitude, given by an insightful expression where only the minimum of the two patience rates appears. Considering the trade-off between abandonment and capacity costs, we characterize the scaling of the optimal safety capacity as a function of costs, arrival rates, and patience parameters. We prove that the ability to hold inventory of servers means that the optimal safety capacity grows logarithmically in abandonment cost and, in turn, slower than the square-root growth in the single-sided queue. This paper was accepted by Baris Ata, stochastic models and simulation. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01513 . 
    more » « less