Mobile robot navigation is a critical aspect of robotics, with applications spanning from service robots to industrial automation. However, navigating in complex and dynamic environments poses many challenges, such as avoiding obstacles, making decisions in real-time, and adapting to new situations. Reinforcement Learning (RL) has emerged as a promising approach to enable robots to learn navigation policies from their interactions with the environment. However, application of RL methods to real-world tasks such as mobile robot navigation, and evaluating their performance under various training–testing settings has not been sufficiently researched. In this paper, we have designed an evaluation framework that investigates the RL algorithm’s generalization capability in regard to unseen scenarios in terms of learning convergence and success rates by transferring learned policies in simulation to physical environments. To achieve this, we designed a simulated environment in Gazebo for training the robot over a high number of episodes. The training environment closely mimics the typical indoor scenarios that a mobile robot can encounter, replicating real-world challenges. For evaluation, we designed physical environments with and without unforeseen indoor scenarios. This evaluation framework outputs statistical metrics, which we then use to conduct an extensive study on a deep RL method, namely the proximal policy optimization (PPO). The results provide valuable insights into the strengths and limitations of the method for mobile robot navigation. Our experiments demonstrate that the trained model from simulations can be deployed to the previously unseen physical world with a success rate of over 88%. The insights gained from our study can assist practitioners and researchers in selecting suitable RL approaches and training–testing settings for their specific robotic navigation tasks.
more »
« less
Improving the Robustness of Reinforcement Learning Policies With L1 Adaptive Control
A reinforcement learning (RL) control policy could fail in a new/perturbed environment that is different from the training environment, due to the presence of dynamic variations. For controlling systems with continuous state and action spaces, we propose an add-on approach to robustifying a pre-trained RL policy by augmenting it with an L1 adaptive controller (L1AC). Leveraging the capability of an L1AC for fast estimation and active ompensation of dynamic variations, the proposed approach can improve the robustness of an RL policy which is trained either in a simulator or in the real world without consideration of a broad class of dynamic variations. Numerical and real-world experiments empirically demonstrate the efficacy of the proposed approach in robustifying RL policies trained using both model-free and modelbased methods.
more »
« less
- Award ID(s):
- 1932529
- PAR ID:
- 10482819
- Editor(s):
- Tamim Asfour, editor in
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE robotics automation letters
- ISSN:
- 2377-3766
- Subject(s) / Keyword(s):
- Reinforcement learning, machine learning for robot control, robust/adaptive control, robot safety
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Object insertion under tight tolerances (less than 1mm) is an important but challenging assembly task as even small errors can result in undesirable contacts. Recent efforts focused on Reinforcement Learning (RL), which often depends on careful definition of dense reward functions. This work proposes an effective strategy for such tasks that integrates traditional model-based control with RL to achieve improved insertion accuracy. The policy is trained exclusively in simulation and is zero-shot transferred to the real system. It employs a potential field-based controller to acquire a model-based policy for inserting a plug into a socket given full observability in simulation. This policy is then integrated with residual RL, which is trained in simulation given only a sparse, goal-reaching reward. A curriculum scheme over observation noise and action magnitude is used for training the residual RL policy. Both policy components use as input the SE(3) poses of both the plug and the socket and return the plug's SE(3) pose transform, which is executed by a robotic arm using a controller. The integrated policy is deployed on the real system without further training or fine-tuning, given a visual SE(3) object tracker. The proposed solution and alternatives are evaluated across a variety of objects and conditions in simulation and reality. The proposed approach outperforms recent RL-based methods in this domain and prior efforts with hybrid policies. Ablations highlight the impact of each component of the approach.more » « less
-
Object insertion under tight tolerances (less than 1mm) is an important but challenging assembly task as even small errors can result in undesirable contacts. Recent efforts focused on Reinforcement Learning (RL), which often depends on careful definition of dense reward functions. This work proposes an effective strategy for such tasks that integrates traditional model-based control with RL to achieve improved insertion accuracy. The policy is trained exclusively in simulation and is zero-shot transferred to the real system. It employs a potential field-based controller to acquire a model-based policy for inserting a plug into a socket given full observability in simulation. This policy is then integrated with residual RL, which is trained in simulation given only a sparse, goal-reaching reward. A curriculum scheme over observation noise and action magnitude is used for training the residual RL policy. Both policy components use as input the SE(3) poses of both the plug and the socket and return the plug's SE(3) pose transform, which is executed by a robotic arm using a controller. The integrated policy is deployed on the real system without further training or fine-tuning, given a visual SE(3) object tracker. The proposed solution and alternatives are evaluated across a variety of objects and conditions in simulation and reality. The proposed approach outperforms recent RL-based methods in this domain and prior efforts with hybrid policies. Ablations highlight the impact of each component of the approach.more » « less
-
Numerous solutions are proposed for the Traffic Signal Control (TSC) tasks aiming to provide efficient transportation and alleviate traffic congestion. Recently, promising results have been attained by Reinforcement Learning (RL) methods through trial and error in simulators, bringing confidence in solving cities' congestion problems. However, performance gaps still exist when simulator-trained policies are deployed to the real world. This issue is mainly introduced by the system dynamic difference between the training simulators and the real-world environments. In this work, we leverage the knowledge of Large Language Models (LLMs) to understand and profile the system dynamics by a prompt-based grounded action transformation to bridge the performance gap. Specifically, this paper exploits the pre-trained LLM's inference ability to understand how traffic dynamics change with weather conditions, traffic states, and road types. Being aware of the changes, the policies' action is taken and grounded based on realistic dynamics, thus helping the agent learn a more realistic policy. We conduct experiments on four different scenarios to show the effectiveness of the proposed PromptGAT's ability to mitigate the performance gap of reinforcement learning from simulation to reality (sim-to-real).more » « less
-
We study adaptive video streaming for multiple users in wireless access edge networks with unreliable channels. The key challenge is to jointly optimize the video bitrate adaptation and resource allocation such that the users' cumulative quality of experience is maximized. This problem is a finite-horizon restless multi-armed multi-action bandit problem and is provably hard to solve. To overcome this challenge, we propose a computationally appealing index policy entitled Quality Index Policy, which is well-defined without the Whittle indexability condition and is provably asymptotically optimal without the global attractor condition. These two conditions are widely needed in the design of most existing index policies, which are difficult to establish in general. Since the wireless access edge network environment is highly dynamic with system parameters unknown and time-varying, we further develop an index-aware reinforcement learning (RL) algorithm dubbed QA-UCB. We show that QA-UCB achieves a sub-linear regret with a low-complexity since it fully exploits the structure of the Quality Index Policy for making decisions. Extensive simulations using real-world traces demonstrate significant gains of proposed policies over conventional approaches. We note that the proposed framework for designing index policy and index-aware RL algorithm is of independent interest and could be useful for other large-scale multi-user problems.more » « less
An official website of the United States government

