skip to main content


Title: Index-aware reinforcement learning for adaptive video streaming at the wireless edge
We study adaptive video streaming for multiple users in wireless access edge networks with unreliable channels. The key challenge is to jointly optimize the video bitrate adaptation and resource allocation such that the users' cumulative quality of experience is maximized. This problem is a finite-horizon restless multi-armed multi-action bandit problem and is provably hard to solve. To overcome this challenge, we propose a computationally appealing index policy entitled Quality Index Policy, which is well-defined without the Whittle indexability condition and is provably asymptotically optimal without the global attractor condition. These two conditions are widely needed in the design of most existing index policies, which are difficult to establish in general. Since the wireless access edge network environment is highly dynamic with system parameters unknown and time-varying, we further develop an index-aware reinforcement learning (RL) algorithm dubbed QA-UCB. We show that QA-UCB achieves a sub-linear regret with a low-complexity since it fully exploits the structure of the Quality Index Policy for making decisions. Extensive simulations using real-world traces demonstrate significant gains of proposed policies over conventional approaches. We note that the proposed framework for designing index policy and index-aware RL algorithm is of independent interest and could be useful for other large-scale multi-user problems.  more » « less
Award ID(s):
2148309
PAR ID:
10410843
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
MobiHoc '22: Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing
Page Range / eLocation ID:
81 to 90
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present Revel, a partially neural reinforcement learning (RL) framework for provably safe exploration in continuous state and action spaces. A key challenge for provably safe deep RL is that repeatedly verifying neural networks within a learning loop is computationally infeasible. We address this challenge using two policy classes: a general, neurosymbolic class with approximate gradients and a more restricted class of symbolic policies that allows efficient verification. Our learning algorithm is a mirror descent over policies: in each iteration, it safely lifts a symbolic policy into the neurosymbolic space, performs safe gradient updates to the resulting policy, and projects the updated policy into the safe symbolic subset, all without requiring explicit verification of neural networks. Our empirical results show that Revel enforces safe exploration in many scenarios in which Constrained Policy Optimization does not, and that it can discover policies that outperform those learned through prior approaches to verified exploration. 
    more » « less
  2. We study the dynamic cache dimensioning problem, where the objective is to decide how much storage to place in the cache to minimize the total costs with respect to the storage and content delivery latency. We formulate this problem as a Markov decision process, which turns out to be a restless multi-armed bandit problem and is provably hard to solve. For given dimensioning decisions, it is possible to develop solutions based on the celebrated Whittle index policy. However, Whittle index policy has not been studied for dynamic cache dimensioning, mainly because cache dimensioning needs to be repeatedly solved and jointly optimized with content caching. To overcome this difficulty, we propose a low-complexity fluid Whittle index policy, which jointly determines dimensioning and content caching. We show that this policy is asymptotically optimal. We further develop a lightweight reinforcement learning augmented algorithm dubbed fW-UCB when the content request and delivery rates are unavailable. fW-UCB is shown to achieve a sub-linear regret as it fully exploits the structure of the near-optimal fluid Whittle index policy and hence can be easily implemented. Extensive simulations using real traces support our theoretical results. 
    more » « less
  3. We study the dynamic cache dimensioning problem, where the objective is to decide how much storage to place in the cache to minimize the total costs with respect to the storage and content delivery latency. We formulate this problem as a Markov decision process, which turns out to be a restless multi-armed bandit problem and is provably hard to solve. For given dimensioning decisions, it is possible to develop solutions based on the celebrated Whittle index policy. However, Whittle index policy has not been studied for dynamic cache dimensioning, mainly because cache dimensioning needs to be repeatedly solved and jointly optimized with content caching. To overcome this difficulty, we propose a low-complexity fluid Whittle index policy, which jointly determines dimensioning and content caching. We show that this policy is asymptotically optimal. We further develop a lightweight reinforcement learning augmented algorithm dubbed fW-UCB when the content request and delivery rates are unavailable. fW-UCB is shown to achieve a sub-linear regret as it fully exploits the structure of the near-optimal fluid Whittle index policy and hence can be easily implemented. Extensive simulations using real traces support our theoretical results. 
    more » « less
  4. We study off-dynamics Reinforcement Learning (RL), where the policy is trained on a source domain and deployed to a distinct target domain. We aim to solve this problem via online distributionally robust Markov decision processes (DRMDPs), where the learning algorithm actively interacts with the source domain while seeking the optimal performance under the worst possible dynamics that is within an uncertainty set of the source domain's transition kernel. We provide the first study on online DRMDPs with function approximation for off-dynamics RL. We find that DRMDPs' dual formulation can induce nonlinearity, even when the nominal transition kernel is linear, leading to error propagation. By designing a $d$-rectangular uncertainty set using the total variation distance, we remove this additional nonlinearity and bypass the error propagation. We then introduce DR-LSVI-UCB, the first provably efficient online DRMDP algorithm for off-dynamics RL with function approximation, and establish a polynomial suboptimality bound that is independent of the state and action space sizes. Our work makes the first step towards a deeper understanding of the provable efficiency of online DRMDPs with linear function approximation. Finally, we substantiate the performance and robustness of DR-LSVI-UCB through different numerical experiments. 
    more » « less
  5. The adaptive bitrate selection (ABR) mechanism, which decides the bitrate for each video chunk is an important part of video streaming. There has been significant interest in developing Reinforcement-Learning (RL) based ABR algorithms because of their ability to learn efficient bitrate actions based on past data and their demonstrated improvements over wired, 3G and 4G networks. However, the Quality of Experience (QoE), especially video stall time, of state-of-the-art ABR algorithms including the RL-based approaches falls short of expectations over commercial mmWave 5G networks, due to widely and wildly fluctuating throughput. These algorithms find optimal policies for a multi-objective unconstrained problem where the policies inherently depend on the predefined weight parameters of the multiple objectives (e.g., bitrate maximization, stall-time minimization). Our empirical evaluation suggests that such a policy cannot adequately adapt to the high variations of 5G throughput, resulting in long stall times. To address these issues, we formulate the ABR selection problem as a constrained Markov Decision Process where the objective is to maximize the QoE subject to a stall-time constraint. The strength of this formulation is that it helps mitigate the stall time while maintaining high bitrates. We propose COREL, a primal-dual actor-critic RL algorithm, which incorporates an additional critic network to estimate stall time compared to existing RL-based approaches and can tune the optimal dual variable or weight to guide the policy towards minimizing stall time. Our experiment results across various commercial mmWave 5G traces reveal that COREL reduces the average stall time by a factor of 4 and the 95th percentile by a factor of 2. 
    more » « less