Plausible claims for quantum advantage have been made using sampling problems such as random circuit sampling in superconducting qubit devices, and Gaussian boson sampling in quantum optics experiments. Now, the major next step is to channel the potential quantum advantage to solve practical applications rather than proof-of-principle experiments. It has recently been proposed that a Gaussian boson sampler can efficiently generate molecular vibronic spectra, which are an important tool for analysing chemical components and studying molecular structures. The best-known classical algorithm for calculating the molecular spectra scales super-exponentially in the system size. Therefore, an efficient quantum algorithm could represent a computational advantage. However, here we propose an efficient quantum-inspired classical algorithm for molecular vibronic spectra with harmonic potentials. Using our method, the zero-temperature molecular vibronic spectra problems that correspond to Gaussian boson sampling can be exactly solved. Consequently, we demonstrate that those problems are not candidates for quantum advantage. We then provide a more general molecular vibronic spectra problem, which is also chemically well motivated, for which our method does not work and so might be able to take advantage of a boson sampler.
more »
« less
Spoofing Cross-Entropy Measure in Boson Sampling
Cross-entropy (XE) measure is a widely used benchmark to demonstrate quantum computational advantage from sampling problems, such as random circuit sampling using superconducting qubits and boson sampling (BS). We present a heuristic classical algorithm that attains a better XE than the current BS experiments in a verifiable regime and is likely to attain a better XE score than the near-future BS experiments in a reasonable running time. The key idea behind the algorithm is that there exist distributions that correlate with the ideal BS probability distribution and that can be efficiently computed. The correlation and the computability of the distribution enable us to postselect heavy outcomes of the ideal probability distribution without computing the ideal probability, which essentially leads to a large XE. Our method scores a better XE than the recent Gaussian BS experiments when implemented at intermediate, verifiable system sizes. Much like current state-of-the-art experiments, we cannot verify that our spoofer works for quantum-advantage-size systems. However, we demonstrate that our approach works for much larger system sizes in fermion sampling, where we can efficiently compute output probabilities. Finally, we provide analytic evidence that the classical algorithm is likely to spoof noisy BS efficiently.
more »
« less
- PAR ID:
- 10482885
- Publisher / Repository:
- Physical Review Letters
- Date Published:
- Journal Name:
- Physical Review Letters
- Volume:
- 131
- Issue:
- 1
- ISSN:
- 0031-9007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Achieving quantum computational advantage requires solving a classically intractable problem on a quantum device. Natural proposals rely upon the intrinsic hardness of classically simulating quantum mechanics; however, verifying the output is itself classically intractable. On the other hand, certain quantum algorithms (e.g. prime factorization via Shor's algorithm) are efficiently verifiable, but require more resources than what is available on near-term devices. One way to bridge the gap between verifiability and implementation is to use "interactions" between a prover and a verifier. By leveraging cryptographic functions, such protocols enable the classical verifier to enforce consistency in a quantum prover's responses across multiple rounds of interaction. In this work, we demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer. We execute two complementary protocols -- one based upon the learning with errors problem and another where the cryptographic construction implements a computational Bell test. To perform multiple rounds of interaction, we implement mid-circuit measurements on a subset of trapped ion qubits, with subsequent coherent evolution. For both protocols, the performance exceeds the asymptotic bound for classical behavior; maintaining this fidelity at scale would conclusively demonstrate verifiable quantum advantage.more » « less
-
Determinantal Point Processes (DPPs) are elegant probabilistic models of repulsion and diversity over discrete sets of items. But their applicability to large sets is hindered by expensive cubic-complexity matrix operations for basic tasks such as sampling. In light of this, we propose a new method for approximate sampling from discrete k-DPPs. Our method takes advantage of the diversity property of subsets sampled from a DPP, and proceeds in two stages: first it constructs coresets for the ground set of items; thereafter, it efficiently samples subsets based on the constructed coresets. As opposed to previous approaches, our algorithm aims to minimize the total variation distance to the original distribution. Experiments on both synthetic and real datasets indicate that our sampling algorithm works efficiently on large data sets, and yields more accurate samples than previous approaches.more » « less
-
We compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers Gurobi and MQLib to solve the MaxCut problem on 3-regular graphs. We identify the minimum noiseless sampling frequency and depthprequired for a quantum device to outperform classical algorithms. There is potential for quantum advantage on hundreds of qubits and moderate depth with a sampling frequency of 10 kHz. We observe, however, that classical heuristic solvers are capable of producing high-quality approximate solutions in linear time complexity. In order to match this quality for large graph sizesN, a quantum device must support depthp > 11. Additionally, multi-shot QAOA is not efficient on large graphs, indicating that QAOAp ≤ 11 does not scale withN. These results limit achieving quantum advantage for QAOA MaxCut on 3-regular graphs. Other problems, such as different graphs, weighted MaxCut, and 3-SAT, may be better suited for achieving quantum advantage on near-term quantum devices.more » « less
-
Markov chain Monte Carlo algorithms have important applications in counting problems and in machine learning problems, settings that involve estimating quantities that are difficult to compute exactly. How much can quantum computers speed up classical Markov chain algorithms? In this work we consider the problem of speeding up simulated annealing algorithms, where the stationary distributions of the Markov chains are Gibbs distributions at temperatures specified according to an annealing schedule. We construct a quantum algorithm that both adaptively constructs an annealing schedule and quantum samples at each temperature. Our adaptive annealing schedule roughly matches the length of the best classical adaptive annealing schedules and improves on nonadaptive temperature schedules by roughly a quadratic factor. Our dependence on the Markov chain gap matches other quantum algorithms and is quadratically better than what classical Markov chains achieve. Our algorithm is the first to combine both of these quadratic improvements. Like other quantum walk algorithms, it also improves on classical algorithms by producing “qsamples” instead of classical samples. This means preparing quantum states whose amplitudes are the square roots of the target probability distribution. In constructing the annealing schedule we make use of amplitude estimation, and we introduce a method for making amplitude estimation nondestructive at almost no additional cost, a result that may have independent interest. Finally we demonstrate how this quantum simulated annealing algorithm can be applied to the problems of estimating partition functions and Bayesian inference.more » « less
An official website of the United States government

