Cross-entropy (XE) measure is a widely used benchmark to demonstrate quantum computational advantage from sampling problems, such as random circuit sampling using superconducting qubits and boson sampling (BS). We present a heuristic classical algorithm that attains a better XE than the current BS experiments in a verifiable regime and is likely to attain a better XE score than the near-future BS experiments in a reasonable running time. The key idea behind the algorithm is that there exist distributions that correlate with the ideal BS probability distribution and that can be efficiently computed. The correlation and the computability of the distribution enable us to postselect heavy outcomes of the ideal probability distribution without computing the ideal probability, which essentially leads to a large XE. Our method scores a better XE than the recent Gaussian BS experiments when implemented at intermediate, verifiable system sizes. Much like current state-of-the-art experiments, we cannot verify that our spoofer works for quantum-advantage-size systems. However, we demonstrate that our approach works for much larger system sizes in fermion sampling, where we can efficiently compute output probabilities. Finally, we provide analytic evidence that the classical algorithm is likely to spoof noisy BS efficiently.
more »
« less
Quantum-inspired classical algorithms for molecular vibronic spectra
Plausible claims for quantum advantage have been made using sampling problems such as random circuit sampling in superconducting qubit devices, and Gaussian boson sampling in quantum optics experiments. Now, the major next step is to channel the potential quantum advantage to solve practical applications rather than proof-of-principle experiments. It has recently been proposed that a Gaussian boson sampler can efficiently generate molecular vibronic spectra, which are an important tool for analysing chemical components and studying molecular structures. The best-known classical algorithm for calculating the molecular spectra scales super-exponentially in the system size. Therefore, an efficient quantum algorithm could represent a computational advantage. However, here we propose an efficient quantum-inspired classical algorithm for molecular vibronic spectra with harmonic potentials. Using our method, the zero-temperature molecular vibronic spectra problems that correspond to Gaussian boson sampling can be exactly solved. Consequently, we demonstrate that those problems are not candidates for quantum advantage. We then provide a more general molecular vibronic spectra problem, which is also chemically well motivated, for which our method does not work and so might be able to take advantage of a boson sampler.
more »
« less
- PAR ID:
- 10530360
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Physics
- Volume:
- 20
- Issue:
- 2
- ISSN:
- 1745-2473
- Page Range / eLocation ID:
- 225 to 231
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Gaussian boson sampling, a computational model that is widely believed to admit quantum supremacy, has already been experimentally demonstrated and is claimed to surpass the classical simulation capabilities of even the most powerful supercomputers today. However, whether the current approach limited by photon loss and noise in such experiments prescribes a scalable path to quantum advantage is an open question. To understand the effect of photon loss on the scalability of Gaussian boson sampling, we analytically derive the asymptotic operator entanglement entropy scaling, which relates to the simulation complexity. As a result, we observe that efficient tensor network simulations are likely possible under the Nout ~ \sqrt(N) scaling of the number of surviving photons Nout in the number of input photons N. We numerically verify this result using a tensor network algorithm with U(1) symmetry, and we overcome previous challenges due to the large local Hilbert-space dimensions in Gaussian boson sampling with hardware acceleration. Additionally, we observe that increasing the photon number through larger squeezing does not increase the entanglement entropy significantly. Finally, we numerically find the bond dimension necessary for fixed accuracy simulations, providing more direct evidence for the complexity of tensor networks.more » « less
-
We compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers Gurobi and MQLib to solve the MaxCut problem on 3-regular graphs. We identify the minimum noiseless sampling frequency and depthprequired for a quantum device to outperform classical algorithms. There is potential for quantum advantage on hundreds of qubits and moderate depth with a sampling frequency of 10 kHz. We observe, however, that classical heuristic solvers are capable of producing high-quality approximate solutions in linear time complexity. In order to match this quality for large graph sizesN, a quantum device must support depthp > 11. Additionally, multi-shot QAOA is not efficient on large graphs, indicating that QAOAp ≤ 11 does not scale withN. These results limit achieving quantum advantage for QAOA MaxCut on 3-regular graphs. Other problems, such as different graphs, weighted MaxCut, and 3-SAT, may be better suited for achieving quantum advantage on near-term quantum devices.more » « less
-
Abstract Lindblad dynamics and other open-system dynamics provide a promising path towards efficient Gibbs sampling on quantum computers. In these proposals, the Lindbladian is obtained via an algorithmic construction akin to designing an artificial thermostat in classical Monte Carlo or molecular dynamics methods, rather than being treated as an approximation to weakly coupled system-bath unitary dynamics. Recently, Chen, Kastoryano, and Gilyén (arXiv:2311.09207) introduced the first efficiently implementable Lindbladian satisfying the Kubo–Martin–Schwinger (KMS) detailed balance condition, which ensures that the Gibbs state is a fixed point of the dynamics and is applicable to non-commuting Hamiltonians. This Gibbs sampler uses a continuously parameterized set of jump operators, and the energy resolution required for implementing each jump operator depends only logarithmically on the precision and the mixing time. In this work, we build upon the structural characterization of KMS detailed balanced Lindbladians by Fagnola and Umanità, and develop a family of efficient quantum Gibbs samplers using a finite set of jump operators (the number can be as few as one), akin to the classical Markov chain-based sampling algorithm. Compared to the existing works, our quantum Gibbs samplers have a comparable quantum simulation cost but with greater design flexibility and a much simpler implementation and error analysis. Moreover, it encompasses the construction of Chen, Kastoryano, and Gilyén as a special instance.more » « less
-
INTRODUCTION Solving quantum many-body problems, such as finding ground states of quantum systems, has far-reaching consequences for physics, materials science, and chemistry. Classical computers have facilitated many profound advances in science and technology, but they often struggle to solve such problems. Scalable, fault-tolerant quantum computers will be able to solve a broad array of quantum problems but are unlikely to be available for years to come. Meanwhile, how can we best exploit our powerful classical computers to advance our understanding of complex quantum systems? Recently, classical machine learning (ML) techniques have been adapted to investigate problems in quantum many-body physics. So far, these approaches are mostly heuristic, reflecting the general paucity of rigorous theory in ML. Although they have been shown to be effective in some intermediate-size experiments, these methods are generally not backed by convincing theoretical arguments to ensure good performance. RATIONALE A central question is whether classical ML algorithms can provably outperform non-ML algorithms in challenging quantum many-body problems. We provide a concrete answer by devising and analyzing classical ML algorithms for predicting the properties of ground states of quantum systems. We prove that these ML algorithms can efficiently and accurately predict ground-state properties of gapped local Hamiltonians, after learning from data obtained by measuring other ground states in the same quantum phase of matter. Furthermore, under a widely accepted complexity-theoretic conjecture, we prove that no efficient classical algorithm that does not learn from data can achieve the same prediction guarantee. By generalizing from experimental data, ML algorithms can solve quantum many-body problems that could not be solved efficiently without access to experimental data. RESULTS We consider a family of gapped local quantum Hamiltonians, where the Hamiltonian H ( x ) depends smoothly on m parameters (denoted by x ). The ML algorithm learns from a set of training data consisting of sampled values of x , each accompanied by a classical representation of the ground state of H ( x ). These training data could be obtained from either classical simulations or quantum experiments. During the prediction phase, the ML algorithm predicts a classical representation of ground states for Hamiltonians different from those in the training data; ground-state properties can then be estimated using the predicted classical representation. Specifically, our classical ML algorithm predicts expectation values of products of local observables in the ground state, with a small error when averaged over the value of x . The run time of the algorithm and the amount of training data required both scale polynomially in m and linearly in the size of the quantum system. Our proof of this result builds on recent developments in quantum information theory, computational learning theory, and condensed matter theory. Furthermore, under the widely accepted conjecture that nondeterministic polynomial-time (NP)–complete problems cannot be solved in randomized polynomial time, we prove that no polynomial-time classical algorithm that does not learn from data can match the prediction performance achieved by the ML algorithm. In a related contribution using similar proof techniques, we show that classical ML algorithms can efficiently learn how to classify quantum phases of matter. In this scenario, the training data consist of classical representations of quantum states, where each state carries a label indicating whether it belongs to phase A or phase B . The ML algorithm then predicts the phase label for quantum states that were not encountered during training. The classical ML algorithm not only classifies phases accurately, but also constructs an explicit classifying function. Numerical experiments verify that our proposed ML algorithms work well in a variety of scenarios, including Rydberg atom systems, two-dimensional random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases. CONCLUSION We have rigorously established that classical ML algorithms, informed by data collected in physical experiments, can effectively address some quantum many-body problems. These rigorous results boost our hopes that classical ML trained on experimental data can solve practical problems in chemistry and materials science that would be too hard to solve using classical processing alone. Our arguments build on the concept of a succinct classical representation of quantum states derived from randomized Pauli measurements. Although some quantum devices lack the local control needed to perform such measurements, we expect that other classical representations could be exploited by classical ML with similarly powerful results. How can we make use of accessible measurement data to predict properties reliably? Answering such questions will expand the reach of near-term quantum platforms. Classical algorithms for quantum many-body problems. Classical ML algorithms learn from training data, obtained from either classical simulations or quantum experiments. Then, the ML algorithm produces a classical representation for the ground state of a physical system that was not encountered during training. Classical algorithms that do not learn from data may require substantially longer computation time to achieve the same task.more » « less
An official website of the United States government

