skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Quantum repeaters: From quantum networks to the quantum internet
A quantum internet is the holy grail of quantum information processing, enabling the deployment of a broad range of quantum technologies and protocols on a global scale. However, numerous challenges must be addressed before the quantum internet can become a reality. Perhaps the most crucial of these is the realization of a quantum repeater, an essential component in the long-distance transmission of quantum information. As the analog of a classical repeater, extender, or booster, the quantum repeater works to overcome loss and noise in the quantum channels constituting a quantum network. Here the conceptual frameworks and architectures for quantum repeaters, as well as the experimental progress toward their realization, are reviewed. Various near-term proposals to overcome the limits to the communication rates set by point-to-point quantum communication are also discussed. Finally, the manner in which quantum repeaters fit within the broader challenge of designing and implementing a quantum internet is overviewed.  more » « less
Award ID(s):
1936118 1640959
PAR ID:
10482889
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Reviews of Modern Physics
Date Published:
Journal Name:
Reviews of Modern Physics
Volume:
95
Issue:
4
ISSN:
0034-6861
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quantum repeater is an essential ingredient for quantum networks that link distant quantum modules such as quantum computers and sensors. Motivated by distributed quantum computing and communication, quantum repeaters that relay discrete-variable quantum information have been extensively studied; while continuous-variable (CV) quantum information underpins a variety of quantum sensing and communication application, a quantum-repeater architecture for genuine CV quantum information remains largely unexplored. This paper reports a CV quantum-repeater architecture based on CV quantum teleportation assisted by the Gottesman–Kitaev–Preskill code to significantly suppress the physical noise. The designed CV quantum-repeater architecture is shown to significantly improve the performance of entanglement-assisted communication, target detection based on quantum illumination and CV quantum key distribution, as three representative use cases for quantum communication and sensing. 
    more » « less
  2. One-way quantum repeaters where loss and operational errors are counteracted by quantum error-correcting codes can ensure fast and reliable qubit transmission in quantum networks. It is crucial that the resource requirements of such repeaters, for example, the number of qubits per repeater node and the complexity of the quantum error-correcting operations are kept to a minimum to allow for near-future implementations. To this end, we propose a one-way quantum repeater that targets both the loss and operational error rates in a communication channel in a resource-efficient manner using code concatenation. Specifically, we consider a tree-cluster code as an inner loss-tolerant code concatenated with an outer 5-qubit code for protection against Pauli errors. Adopting flag-based stabilizer measurements, we show that intercontinental distances of up to 10,000 km can be bridged with a minimized resource overhead by interspersing repeater nodes that each specialize in suppressing either loss or operational errors. Our work demonstrates how tailored error-correcting codes can significantly lower the experimental requirements for long-distance quantum communication. 
    more » « less
  3. Abstract

    We examine the viability of quantum repeaters based on two-species trapped ion modules for long-distance quantum key distribution. Repeater nodes comprised of ion-trap modules of co-trapped ions of distinct species are considered. The species used for communication qubits has excellent optical properties while the other longer lived species serves as a memory qubit in the modules. Each module interacts with the network only via single photons emitted by the communication ions. Coherent Coulomb interaction between ions is utilized to transfer quantum information between the communication and memory ions and to achieve entanglement swapping between two memory ions. We describe simple modular quantum repeater architectures realizable with the ion-trap modules and numerically study the dependence of the quantum key distribution rate on various experimental parameters, including coupling efficiency, gate infidelity, operation time and length of the elementary links. Our analysis suggests crucial improvements necessary in a physical implementation for co-trapped two-species ions to be a competitive platform in long-distance quantum communication.

     
    more » « less
  4. Quantum repeaters are nodes in a quantum communication network that allow reliable transmission of entanglement over large distances. It was recently shown that highly entangled photons in so-called graph states can be used for all-photonic quantum repeaters, which require substantially fewer resources compared to atomic-memory-based repeaters. However, standard approaches to building multiphoton entangled states through pairwise probabilistic entanglement generation severely limit the size of the state that can be created. Here, we present a protocol for the deterministic generation of large photonic repeater states using quantum emitters such as semiconductor quantum dots and defect centers in solids. We show that arbitrarily large repeater states can be generated using only one emitter coupled to a single qubit, potentially reducing the necessary number of photon sources by many orders of magnitude. Our protocol includes a built-in redundancy, which makes it resilient to photon loss. 
    more » « less
  5. Long-distance quantum communication will require the use of quantum repeaters to overcome the exponential attenuation of signal with distance. One class of such repeaters utilizes quantum error correction to overcome losses in the communication channel. Here we propose a strategy of using the bosonic Gottesman-Kitaev-Preskill (GKP) code in a two-way repeater architecture with multiplexing. The crucial feature of the GKP code that we make use of is the fact that GKP qubits easily admit deterministic two-qubit gates, hence allowing for multiplexing without the need for generating large cluster states as required in previous all-photonic architectures based on discrete-variable codes. Moreover, alleviating the need for such clique clusters entails that we are no longer limited to extraction of at most one end-to-end entangled pair from a single protocol run. In fact, thanks to the availability of the analog information generated during the measurements of the GKP qubits, we can design better entanglement swapping procedures in which we connect links based on their estimated quality. This enables us to use all the multiplexed links so that large number of links from a single protocol run can contribute to the generation of the end-to-end entanglement. We find that our architecture allows for high-rate end-to-end entanglement generation and is resilient to imperfections arising from finite squeezing in the GKP state preparation and homodyne detection inefficiency. In particular we show that long-distance quantum communication over more than 1000 km is possible even with less than 13 dB of GKP squeezing. We also quantify the number of GKP qubits needed for the implementation of our scheme and find that for good hardware parameters our scheme requires around 10^3 - 10^4 GKP qubits per repeater per protocol run. 
    more » « less