- Award ID(s):
- 1943109
- PAR ID:
- 10482917
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
- ISBN:
- 9781450394215
- Page Range / eLocation ID:
- 1 to 18
- Subject(s) / Keyword(s):
- weaving computer-aided design parametric desig smart textiles textile fabrication open-source first-person methods
- Format(s):
- Medium: X
- Location:
- Hamburg Germany
- Sponsoring Org:
- National Science Foundation
More Like this
-
New printing strategies have enabled 3D-printed materials that imitate traditional textiles. These filament-based textiles are easy to fabricate but lack the look and feel of fiber textiles. We seek to augment 3D-printed textiles with needlecraft to produce composite materials that integrate the programmability of additive fabrication with the richness of traditional textile craft. We present PunchPrint: a technique for integrating fiber and filament in a textile by combining punch needle embroidery and 3D printing. Using a toolpath that imitates textile weave structure, we print a flexible fabric that provides a substrate for punch needle production. We evaluate our material’s robustness through tensile strength and needle compatibility tests. We integrate our technique into a parametric design tool and produce functional artifacts that show how PunchPrint broadens punch needle craft by reducing labor in small, detailed artifacts, enabling the integration of openings and multiple yarn weights, and scaffolding soft 3D structures.more » « less
-
Woven smart textiles are useful in creating flexible electronics because they integrate circuitry into the structure of the fabric itself. However, there do not yet exist tools that support the specific needs of smart textiles weavers. This paper describes the process and development of AdaCAD, an application for composing smart textile weave drafts. By augmenting traditional weaving drafts, AdaCAD allows weavers to design woven structures and circuitry in tandem and offers specific support for common smart textiles techniques. We describe these techniques, how our tool supports them alongside feedback from smart textiles weavers. We conclude with a reflection on smart textiles practice more broadly and suggest that the metaphor of coproduction can be fruitful in creating effective tools and envisioning future applications in this space.more » « less
-
Abstract Electronic textiles (e‐textiles) are in prime position to revolutionize the field of wearable electronics owing to their ubiquitous use and universal acceptance. However, mechanical incompatibility between the rigid conductive components on the soft textile platforms creates fragile e‐textile systems with poor electromechanical attributes. In this work, a novel design strategy to inkjet print reactive silver inks onto woven textiles with Kirigami‐inspired patterning to create e‐textiles with enhanced electromechanical features is introduced. By controlling the print processing and curing conditions, uniform conductive coatings with sheet resistances of 0.09 Ω sq−1are achieved such that they do not interfere with the textiles innate flexibility, breathability, comfort, and fabric hand. The electromechanical coupling of the printed textiles shows a direct dependence on the anisotropic nature of the woven structures. Introducing Kirigami patterning creates robust devices that enhance and stabilize the electrical conductivity (Δ
R /R 0< −20%) over large strain regimes (>150%). Furthermore, an electrocardiogram monitoring system fabricated from Kirigami e‐textiles exhibits stable signal acquisition under extreme deformations from arm joint flexion. The distinct properties of Kirigami patterning on e‐textiles enable unprecedented electromechanical performance in wearable textile electronics. -
Smart textiles development is combining computing and textile technologies to create tactile, functional objects such as smart garments, soft medical devices, and space suits. However, the field also combines the massive waste streams of both the digital electronics and textiles industries. The following work explores how HCI researchers might be poised to address sustainability and waste in future smart textiles development through interventions at design time. Specifically, we perform a design inquiry into techniques and practices for reclaiming and reusing smart textiles materials and explore how such techniques can be integrated into smart textiles design tools. Beginning with a practice in sustainable or "slow" fashion, unravelling a garment into yarn, the suite of explorations titled "Unfabricate" probes values of time and labor in crafting a garment; speculates how a smart textile garment may be designed with reuse in mind; and imagines how electronic and textile components may be given new life in novel uses.more » « less
-
Abstract Soft polymer‐based sensors as an integral part of textile structures have attracted considerable scientific and commercial interest recently because of their potential use in healthcare, security systems, and other areas. While electronic sensing functionalities can be incorporated into textiles at one or more of the hierarchical levels of molecules, fibers, yarns, or fabrics, arguably a more practical and inconspicuous means to introduce the desired electrical characteristics is at the fiber level, using processes that are compatible to textiles. Here, a prototype multimodal and multifunctional sensor array formed within a woven fabric structure using bicomponent fibers with ordered insulating and conducting segments is reported. The multifunctional characteristics of the sensors are successfully demonstrated by measuring tactile, tensile, and shear deformations, as well as wetness and biopotential. While the unobtrusive integration of sensing capabilities offers possibilities to preserve all desirable textile qualities, this scaled‐up fiber‐based approach demonstrates the potential for scalable and facile manufacturability of practical e‐textile products using low‐cost roll‐to‐roll processing of large‐area flexible sensor systems and can be remarkably effective in advancing the field of e‐textiles.