skip to main content


Title: AdaCAD: Crafting Software For Smart Textiles Design
Woven smart textiles are useful in creating flexible electronics because they integrate circuitry into the structure of the fabric itself. However, there do not yet exist tools that support the specific needs of smart textiles weavers. This paper describes the process and development of AdaCAD, an application for composing smart textile weave drafts. By augmenting traditional weaving drafts, AdaCAD allows weavers to design woven structures and circuitry in tandem and offers specific support for common smart textiles techniques. We describe these techniques, how our tool supports them alongside feedback from smart textiles weavers. We conclude with a reflection on smart textiles practice more broadly and suggest that the metaphor of coproduction can be fruitful in creating effective tools and envisioning future applications in this space.  more » « less
Award ID(s):
1755587
PAR ID:
10094652
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
CHI '19 Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
Paper No. 345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Smart textiles integrate sensing and actuation components into their structures to bring interactivity to fabrics. We describe how we adapted two existing fiber arts techniques, double weaving and yarn plying, for the purpose of creating a woven textile that changes color in response to touch. We draw from this experience to make three core contributions: descriptions of our experiments plying yarns that change between three color states; descriptions of double weaving structures that allow us to support interactivity while hiding circuitry from view; and suggestions for how these techniques could be adapted and extended by other researchers to make richly crafted and technologically sophisticated fabrics. 
    more » « less
  2. Woven textiles are increasingly a medium through which HCI is inventing new technologies. Key challenges in integrating woven textiles in HCI include the high level of textile knowledge required to make effective use of the new possibilities they afford and the need for tools that bridge the concerns of textile designers and concerns of HCI researchers. This paper presents AdaCAD, a parametric design tool for designing woven textile structures. Through our design and evaluation of AdaCAD we found that parametric design helps weavers notate and explain the logics behind the complex structures they generate. We discuss these finding in relation to prior work in integrating craft and/or weaving in HCI, histories of woven notation, and boundary object theory to illuminate further possibilities for collaboration between craftspeople and HCI practitioners. 
    more » « less
  3. Paper circuitry has been extensively explored by HCI researchers as a means of creating interactive objects. However, these approaches focus on creating desktop or handheld objects, and paper as a wearable material remains under-explored. We present SkinPaper, a fabrication approach using silicone-treated washi paper to weave lightweight and easy-to-fabricate on-skin interactions. We adopt techniques from paper weaving and basketry weaving practices to create paper-woven structures that can conform to the body. Our approach uses off-the-shelf materials to facilitate a highly customizable fabrication process. We showcase eight case studies to illustrate our approach’s two to three-dimensional forms. To understand the expressiveness of the design space, we conducted a workshop study in which weavers created paper-woven on-skin interactions. We draw insights from the studies to understand the opportunities for paper-woven on-skin interactions. 
    more » « less
  4. Abstract

    Smart textiles are currently being pursued for actuation and sensing for their potential to directly incorporate “intelligence” into the fabric, in contrast to wearable technologies. In smart textiles, smart materials (e.g., piezoelectric) are formed into yarns that are woven into fabrics for clothing. One immediate requirement for such textiles is their stability during washing cycles, as expected of any clothing items, which has been largely lacking so far. Here, we investigate the washing stability of nanofibrous piezoelectric textiles. Our results reveal that electrospun textiles exhibit remarkable structural stability from the fiber microstructure to the textile level. Overall fiber crystalline composition and electroactive phase remain stable within 1% of ~47% and ~85%, respectively. Mechanically, the textile displays sustained performance, with only negligible changes observed. The yield strain and stress only show a ~8% and 9% differences, respectively. Moreover, piezoelectric stability is confirmed through phase preservation and slight variation in voltage output of ~6%. These results prove the candidacy that the processing of electrospun polyvinylidene fluoride (PVDF) fibers to woven textiles is applicable to the demands of smart textiles, which is expected to accelerate the commercialization of such textiles for wearable robotics and health monitoring.

     
    more » « less
  5. Weaving is a fabrication process that is grounded in mathematics and engineering: from the binary, matrix-like nature of the pattern drafts weavers have used for centuries, to the punch card programming of the first Jacquard looms. This intersection of disciplines provides an opportunity to ground abstract mathematical concepts in a concrete and embodied art, viewing this textile art through the lens of engineering. Currently, available looms are not optimized to take advantage of this opportunity to increase mathematics learning by providing hands-on interdisciplinary learning in collegiate classrooms. In this work, we present SPEERLoom: an open-source, robotic Jacquard loom kit designed to be a tool for interweaving cloth fabrication, mathematics, and engineering to support interdisciplinary learning in the classroom. We discuss the design requirements and subsequent design of SPEERLoom. We also present the results of a pilot study in a post-secondary class finding that SPEERLoom supports hands-on, interdisciplinary learning of math, engineering, and textiles. 
    more » « less