skip to main content

Title: AdaCAD: Crafting Software For Smart Textiles Design
Woven smart textiles are useful in creating flexible electronics because they integrate circuitry into the structure of the fabric itself. However, there do not yet exist tools that support the specific needs of smart textiles weavers. This paper describes the process and development of AdaCAD, an application for composing smart textile weave drafts. By augmenting traditional weaving drafts, AdaCAD allows weavers to design woven structures and circuitry in tandem and offers specific support for common smart textiles techniques. We describe these techniques, how our tool supports them alongside feedback from smart textiles weavers. We conclude with a reflection on smart textiles practice more broadly and suggest that the metaphor of coproduction can be fruitful in creating effective tools and envisioning future applications in this space.
; ;
Award ID(s):
Publication Date:
Journal Name:
CHI '19 Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
Page Range or eLocation-ID:
Paper No. 345
Sponsoring Org:
National Science Foundation
More Like this
  1. Smart textiles integrate sensing and actuation components into their structures to bring interactivity to fabrics. We describe how we adapted two existing fiber arts techniques, double weaving and yarn plying, for the purpose of creating a woven textile that changes color in response to touch. We draw from this experience to make three core contributions: descriptions of our experiments plying yarns that change between three color states; descriptions of double weaving structures that allow us to support interactivity while hiding circuitry from view; and suggestions for how these techniques could be adapted and extended by other researchers to make richlymore »crafted and technologically sophisticated fabrics.« less
  2. This paper proposes a new way of designing and fabricating conformal flexible electronics on free-form surfaces, which can generate woven flexible electronics designs conforming to free-form 3D shapes with 2D printed electronic circuits. Utilizing our recently proposed foliation-based 3D weaving techniques, we can reap unprecedented advantages in conventional 2D electronic printing. The method is based on the foliation theory in differential geometry, which divides a surface into parallel leaves. Given a surface with circuit design, we first calculate a graph-value harmonic map and then create two sets of harmonic foliations perpendicular to each other. As the circuits are processed asmore »the texture on the surface, they are separated and attached to each leaf. The warp and weft threads are then created and manually woven to reconstruct the surface and reconnect the circuits. Notably, The circuits are printed in 2D, which uniquely differentiates the proposed method from others. Compared with costly conformal 3D electronic printing methods requiring 5-axis CNC machines, our method is more reliable, more efficient, and economical. Moreover, the Harmonic foliation theory assures smoothness and orthogonality between every pair of woven yarns, which guarantees the precision of the flexible electronics woven on the surface. The proposed method provides an alternative solution to the design and physical realization of surface electronic textiles for various applications, including wearable electronics, sheet metal craft, architectural designs, and smart woven-composite parts with conformal sensors in the automotive and aerospace industry. The performance of the proposed method is depicted using two examples.« less
  3. We report a flexible and wearable bacteria-powered battery in which four functional yarns are placed in parallel for biological energy harvesting. A current collecting yarn is sandwiched between two conductive/hydrophilic active yarns including electricity-generating bacteria while a polymer-passivated cathodic yarn is located next to one of the active yarns to form a biological fuel cell configuration. The device uses Shewanella oneidensis MR-1 as a biocatalyst to produce a maximum power of 17μW/cm3 and current density 327μA/cm3, which are enough to power small-power applications. This yarn-structured biobattery can be potentially woven or knitted into an energy storage fabric to provide amore »higher power for smart textiles. Furthermore, sweat generated from the human body can be a potential fuel to support bacterial viability, providing the long-term operation of the battery.« less
  4. Smart textiles development is combining computing and textile technologies to create tactile, functional objects such as smart garments, soft medical devices, and space suits. However, the field also combines the massive waste streams of both the digital electronics and textiles industries. The following work explores how HCI researchers might be poised to address sustainability and waste in future smart textiles development through interventions at design time. Specifically, we perform a design inquiry into techniques and practices for reclaiming and reusing smart textiles materials and explore how such techniques can be integrated into smart textiles design tools. Beginning with a practicemore »in sustainable or "slow" fashion, unravelling a garment into yarn, the suite of explorations titled "Unfabricate" probes values of time and labor in crafting a garment; speculates how a smart textile garment may be designed with reuse in mind; and imagines how electronic and textile components may be given new life in novel uses.« less
  5. E-textiles, which embed circuitry into textile fabrics, blend art and creative expression with engineering, making it a popular choice for STEAM classrooms [6, 12]. Currently, e-textile development relies on tools intended for traditional embedded systems, which utilize printed circuit boards and insulated wires. These tools do not translate well to e-textiles, which utilize fabric and uninsulated conductive thread. This mismatch of tools and materials can lead to an overly complicated development process for novices. In particular, rapid prototyping tools for traditional embedded systems are poorly matched for e-textile prototyping. This paper presents the ThreadBoard, a tool that supports rapid prototypingmore »of e-textile circuits. With rapid prototyping, students can test circuit designs and identify circuitry errors prior to their sewn project. We present the design process used to iteratively create the ThreadBoard’s layout, with the goal of improving its usability for e-textile creators.« less