skip to main content


Title: Can Shadows Reveal Biometric Informationƒ
We study the problem of extracting biometric informa- tion of individuals by looking at shadows of objects cast on diffuse surfaces. We show that the biometric information leakage from shadows can be sufficient for reliable identity inference under representative scenarios via a maximum like- lihood analysis. We then develop a learning-based method that demonstrates this phenomenon in real settings, exploit- ing the subtle cues in the shadows that are the source of the leakage without requiring any labeled real data. In par- ticular, our approach relies on building synthetic scenes composed of 3D face models obtained from a single photo- graph of each identity. We transfer what we learn from the synthetic data to the real data using domain adaptation in a completely unsupervised way. Our model is able to general- ize well to the real domain and is robust to several variations in the scenes. We report high classification accuracies in an identity classification task that takes place in a scene with unknown geometry and occluding objects.  more » « less
Award ID(s):
1816209
NSF-PAR ID:
10482933
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proc. Winter Conf. Appl. Comp. Vision (WACV)
ISSN:
2642-9381
Page Range / eLocation ID:
869 to 879
Format(s):
Medium: X
Location:
Waikoloa, HI, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate pose estimation is often a requirement for robust robotic grasping and manipulation of objects placed in cluttered, tight environments, such as a shelf with multiple objects. When deep learning approaches are employed to perform this task, they typically require a large amount of training data. However, obtaining precise 6 degrees of freedom for ground-truth can be prohibitively expensive. This work therefore proposes an architecture and a training process to solve this issue. More precisely, we present a weak object detector that enables localizing objects and estimating their 6D poses in cluttered and occluded scenes. To minimize the human labor required for annotations, the proposed detector is trained with a combination of synthetic and a few weakly annotated real images (as little as 10 images per object), for which a human provides only a list of objects present in each image (no time-consuming annotations, such as bounding boxes, segmentation masks and object poses). To close the gap between real and synthetic images, we use multiple domain classifiers trained adversarially. During the inference phase, the resulting class-specific heatmaps of the weak detector are used to guide the search of 6D poses of objects. Our proposed approach is evaluated on several publicly available datasets for pose estimation. We also evaluated our model on classification and localization in unsupervised and semi-supervised settings. The results clearly indicate that this approach could provide an efficient way toward fully automating the training process of computer vision models used in robotics. 
    more » « less
  2. null (Ed.)
    We present a novel technique for transcribing crowds in video scenes that allows extracting the positions of moving objects in video frames. The technique can be used as a more precise alternative to image processing methods, such as background-removal or automated pedestrian detection based on feature extraction and classification. By manually projecting pedestrian actors on a two-dimensional plane and translating screen coordinates to absolute real-world positions using the cross ratio, we provide highly accurate and complete results at the cost of increased processing time. We are able to completely avoid most errors found in other automated annotation techniques, resulting from sources such as noise, occlusion, shadows, view angle or the density of pedestrians. It is further possible to process scenes that are difficult or impossible to transcribe by automated image processing methods, such as low-contrast or low-light environments. We validate our model by comparing it to the results of both background-removal and feature extraction and classification in a variety of scenes. 
    more » « less
  3. Domain adaptation is critical for success in new, unseen environments. Adversarial adaptation models have shown tremendous progress towards adapting to new environments by focusing either on discovering domain invariant representations or by mapping between unpaired image domains. While feature space methods are difficult to interpret and sometimes fail to capture pixel-level and low-level domain shifts, image space methods sometimes fail to incorporate high level semantic knowledge relevant for the end task. We propose a model which adapts between domains using both generative image space alignment and latent representation space alignment. Our approach, Cycle-Consistent Adversarial Domain Adaptation (CyCADA), guides transfer between domains according to a specific discriminatively trained task and avoids divergence by enforcing consistency of the relevant semantics before and after adaptation. We evaluate our method on a variety of visual recognition and prediction settings, including digit classification and semantic segmentation of road scenes, advancing state-of-the-art performance for unsupervised adaptation from synthetic to real world driving domains. 
    more » « less
  4. Video scene analysis is a well-investigated area where researchers have devoted efforts to detect and classify people and objects in the scene. However, real-life scenes are more complex: the intrinsic states of the objects (e.g., machine operating states or human vital signals) are often overlooked by vision-based scene analysis. Recent work has proposed a radio frequency (RF) sensing technique, wireless vibrometry, that employs wireless signals to sense subtle vibrations from the objects and infer their internal states. We envision that the combination of video scene analysis with wireless vibrometry form a more comprehensive understanding of the scene, namely "rich scene analysis". However, the RF sensors used in wireless vibrometry only provide time series, and it is challenging to associate these time series data with multiple real-world objects. We propose a real-time RF-vision sensor fusion system, Capricorn, that efficiently builds a cross-modal correspondence between visual pixels and RF time series to better understand the complex natures of a scene. The vision sensors in Capricorn model the surrounding environment in 3D and obtain the distances of different objects. In the RF domain, the distance is proportional to the signal time-of-flight (ToF), and we can leverage the ToF to separate the RF time series corresponding to each object. The RF-vision sensor fusion in Capricorn brings multiple benefits. The vision sensors provide environmental contexts to guide the processing of RF data, which helps us select the most appropriate algorithms and models. Meanwhile, the RF sensor yields additional information that is originally invisible to vision sensors, providing insight into objects' intrinsic states. Our extensive evaluations show that Capricorn real-timely monitors multiple appliances' operating status with an accuracy of 97%+ and recovers vital signals like respirations from multiple people. A video (https://youtu.be/b-5nav3Fi78) demonstrates the capability of Capricorn. 
    more » « less
  5. Ground truth depth information is necessary for many computer vision tasks. Collecting this information is chal-lenging, especially for outdoor scenes. In this work, we propose utilizing single-view depth prediction neural networks pre-trained on synthetic scenes to generate relative depth, which we call pseudo-depth. This approach is a less expen-sive option as the pre-trained neural network obtains ac-curate depth information from synthetic scenes, which does not require any expensive sensor equipment and takes less time. We measure the usefulness of pseudo-depth from pre-trained neural networks by training indoor/outdoor binary classifiers with and without it. We also compare the difference in accuracy between using pseudo-depth and ground truth depth. We experimentally show that adding pseudo-depth to training achieves a 4.4% performance boost over the non-depth baseline model on DIODE, a large stan-dard test dataset, retaining 63.8% of the performance boost achieved from training a classifier on RGB and ground truth depth. It also boosts performance by 1.3% on another dataset, SUN397, for which ground truth depth is not avail-able. Our result shows that it is possible to take information obtained from a model pre-trained on synthetic scenes and successfully apply it beyond the synthetic domain to real-world data. 
    more » « less