skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Theoretical Framework for Trait-Based Eco-Evolutionary Dynamics: Population Structure, Intraspecific Variation, and Community Assembly
How is trait diversity in a community apportioned between and within coevolving species? Disruptive selection may result in either a few species with large intraspecific trait variation (ITV) or many species with different mean traits but little ITV. Similar questions arise in spatially structured communities: heterogeneous environments could result in either a few species that exhibit local adaptation or many species with different mean traits but little local adaptation. To date, theory has been well-equipped to either include ITV or to dynamically determine the number of coexisting species, but not both. Here, we devise a theoretical framework that combines these facets and apply it to the above questions of how trait variation is apportioned within and between species in unstructured and structured populations, using two simple models of Lotka-Volterra competition. For unstructured communities, we find that as the breadth of the resource spectrum increases, ITV goes from being unimportant to crucial for characterizing the community. For spatially structured communities on two patches, we find no local adaptation, symmetric local adaptation, or asymmetric local adaptation, depending on how much the patches differ. Our framework provides a general approach to incorporate ITV in models of eco-evolutionary community assembly.  more » « less
Award ID(s):
1754250
PAR ID:
10482957
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Society of Naturalists
Date Published:
Journal Name:
The American Naturalist
Edition / Version:
1
Volume:
201
Issue:
4
ISSN:
0003-0147
Page Range / eLocation ID:
501 to 522
Subject(s) / Keyword(s):
moment methods evolutionarily stable communities adaptive dynamics quantitative genetics intraspeci!c trait variation (ITV)
Format(s):
Medium: X Size: 2.4MB Other: pdf
Size(s):
2.4MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Intraspecific trait variation (ITV) is a widespread feature of life, but it is an open question how ITV affects between‐species coexistence. Recent theoretical studies have produced contradictory results, with ITV promoting coexistence in some models and undermining coexistence in others. Here we review recent work and propose a new conceptual framework to explain how ITV affects coexistence between two species. We propose that all traits belong to one of two categories: niche traits and hierarchical traits. Niche traits determine an individual's location on a niche axis or trade‐off axis, such that changing an individual's trait makes it perform better in some circumstances and worse in others. Hierarchical traits represent cases where conspecifics with different traits have the same niche, but one performs better under all circumstances, such that there are winners and losers. Our framework makes predictions for how intraspecific variation in each type of trait affects coexistence by altering stabilizing mechanisms and fitness differences. For example, ITV in niche traits generally weakens the stabilizing mechanism, except when it generates a generalist–specialist trade‐off. On the other hand, hierarchical traits tend to impact competitors differently, such that ITV in one species will strengthen the stabilizing mechanism while ITV in the other species will weaken the mechanism. We re‐examine 10 studies on ITV and coexistence, along with four novel models, and show that our framework can explain why ITV promotes coexistence in some models and undermines coexistence in others. Overall, our framework reconciles what were previously considered to be contrasting results and provides both theoretical and empirical directions to study the effect of ITV on species coexistence. 
    more » « less
  2. Trait-based analyses provide powerful tools for developing a generalizable, physiologically grounded understanding of how forest communities are responding to ongoing environmental changes. Key challenges lie in (1) selecting traits that best characterize the ecological performance of species in the community and (2) determining the degree and importance of intraspecific variability in those traits. Recent studies suggest that globally evident trait correlations (trait dimensions), such as the leaf economic spectrum, may be weak or absent at local scales. Moreover, trait-based analyses that utilize a mean value to represent a species may be misleading. Mean trait values are particularly problematic if species trait value rankings change along environmental gradients, resulting in species trait crossover. To assess how plant traits (1) covary at local spatial scales, (2) vary across the dominant environmental gradients, and (3) can be partitioned within and across taxa, we collected data on 9 traits for 13 tree species spanning the montane temperate—boreal forest ecotones of New York and northern New England. The primary dimension of the trait ordination was the leaf economic spectrum, with trait variability among species largely driven by differences between deciduous angiosperms and evergreen gymnosperms. A second dimension was related to variability in nitrogen to phosphorous levels and stem specific density. Levels of intraspecific trait variability differed considerably among traits, and was related to variation in light, climate, and tree developmental stage. However, trait rankings across species were generally conserved across these gradients and there was little evidence of species crossover. The persistence of the leaf economics spectrum in both temperate and high-elevation conifer forests suggests that ecological strategies of tree species are associated with trade-offs between resource acquisition and tolerance, and may be quantified with relatively few traits. Furthermore, the assumption that species may be represented with a single trait value may be warranted for some trait-based analyses provided traits were measured under similar light levels and climate conditions. 
    more » « less
  3. Plant traits are important for understanding community assembly and ecosystem processes, yet our understanding of intraspecific trait variation (ITV) is limited. This gap in our knowledge is partially because collecting trait data across a species' entire range is impractical, let alone across the ranges of multiple species within a plant family. Using machine learning techniques to predict spatial ITV is an attractive and cost‐effective alternative to sampling across a species range, although this has not been applied beyond regional scales. We compiled a trait database of over 1000 grass species (family: Poaceae), encompassing six key functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height, leaf area, leaf nitrogen (Nmass) and leaf phosphorus content (Pmass). Using a random forest machine learning approach, we predicted local trait values within species' ranges considering climate, soil type, phylogeny, lifespan, and photosynthetic pathway as influential factors. An iterative random forest modeling technique incorporated correlations between traits, resulting in improved model performance (observed versus predicted R range of 0.72–0.91). Our models also highlight the importance of climate in predicting trait variation. For a subset of species (n = 860), we projected trait predictions across their known distribution, informed by expert maps from Royal Botanic Gardens, Kew, to create global maps of ITV for grasses. Such maps have the potential to inform conservation efforts and predictions of grazing and fire dynamics in grasslands worldwide. Overall, our research demonstrates the value and ecological applications of predicting plant traits. 
    more » « less
  4. 1. Spatial partitioning is a classic hypothesis to explain plant species coexistence, but evidence linking local environmental variation to spatial sorting, demography, and species’ traits is sparse. If co-occurring species’ performance is optimized differently along environmental gradients because of trait variation, then spatial variation might facilitate coexistence. 2. We used a system of four naturally co-occurring species of Clarkia (Onagraceae) to ask if distribution patchiness corresponds to variation in two environmental variables that contribute to hydrological variation. We then reciprocally sowed Clarkia into each patch type and measured demographic rates in the absence of congeneric competition. Species sorted in patches along one or both gradients, and in three of the four species, germination rate in the “home” patch was higher than all other patches. 3. Spatially variable germination resulted in the same three species exhibiting the highest population growth rates in their home patches. 4. Species’ trait values related to plant water use, as well as indicators of water stress in home patches, differed among species and corresponded to home patch attributes. However, post-germination survival did not vary among species or between patch types, and fecundity did not vary spatially. 5. Synthesis Our research demonstrates the likelihood that within-community spatial heterogeneity affects plant species coexistence, and presents novel evidence that differential performance in space is explained by what happens in the germination stage. Despite the seemingly obvious link between adult plant water-use and variation in the environment, our results distinguish the germination stage as important for spatially variable population performance. 
    more » « less
  5. Abstract Intra‐specific trait variation (ITV) plays a role in processes at a wide range of scales from organs to ecosystems across climate gradients. Yet, ITV remains rarely quantified for many ecophysiological traits typically assessed for species means, such as pressure volume (PV) curve parameters including osmotic potential at full turgor and modulus of elasticity, which are important in plant water relations. We defined a baseline “reference ITV” (ITVref) as the variation among fully exposed, mature sun leaves of replicate individuals of a given species grown in similar, well‐watered conditions, representing the conservative sampling design commonly used for species‐level ecophysiological traits. We hypothesized that PV parameters would show low ITVrefrelative to other leaf morphological traits, and that their intraspecific relationships would be similar to those previously established across species and proposed to arise from biophysical constraints. In a database of novel and published PV curves and additional leaf structural traits for 50 diverse species, we found low ITVreffor PV parameters relative to other morphological traits, and strong intraspecific relationships among PV traits. Simulation modeling showed that conservative ITVrefenables the use of species‐mean PV parameters for scaling up from spectroscopic measurements of leaf water content to enable sensing of leaf water potential. 
    more » « less