Abstract. Ice core water isotope records from Greenland and Antarctica are a valuableproxy for paleoclimate reconstruction, yet the processes influencing theclimate signal stored in the isotopic composition of the snow are beingchallenged and revisited. Apart from precipitation input, post-depositionalprocesses such as wind-driven redistribution and vapor–snow exchange processes at and below the surface are hypothesized to contribute to the isotope climate signal subsequently stored in the ice. Recent field studies have shown that surface snow isotopes vary between precipitation events and co-vary with vapor isotopes, which demonstrates that vapor–snow exchange is an important driving mechanism. Here we investigate how vapor–snow exchange processes influence the isotopic composition of the snowpack. Controlled laboratory experiments under forced sublimation show an increase in snow isotopic composition of up to 8 ‰ δ18O in the uppermost layer due to sublimation, with an attenuated signal down to 3 cm snow depth over the course of 4–6 d. This enrichment is accompanied by a decrease in the second-order parameter d-excess, indicating kinetic fractionation processes. Our observations confirm that sublimation alone can lead to a strong enrichment of stable water isotopes in surface snow and subsequent enrichment in the layers below. To compare laboratory experiments with realistic polar conditions, we completed four 2–3 d field experiments at the East Greenland Ice Core Project site (northeast Greenland) in summer 2019. High-resolution temporal sampling of both natural and isolated snow was conducted under clear-sky conditions and demonstrated that the snow isotopic composition changes on hourly timescales. A change of snow isotope content associated with sublimation is currently not implemented in isotope-enabled climate models and is not taken into account when interpreting ice core isotopic records. However, our results demonstrate that post-depositional processes such as sublimation contribute to the climate signal recorded in the water isotopes in surface snow, in both laboratory and field settings. This suggests that the ice core water isotope signal may effectively integrate across multiple parameters, and the ice core climate record should be interpreted as such, particularly in regions of low accumulation.
more »
« less
Technical note: Lessons from and best practices for the deployment of the Soil Water Isotope Storage System
Abstract. Soil water isotope datasets are useful for understanding connections between the hydrosphere, atmosphere, biosphere, and geosphere. However, they have been underproduced because of the technical challenges associated with collecting those datasets. Here, we present the results of testing and automation of the Soil Water Isotope Storage System (SWISS). The unique innovation of the SWISS is that we are able to automatically collect water vapor from the critical zone at a regular time interval and then store that water vapor until it can be measured back in a laboratory setting. Through a series of quality assurance and quality control tests, we tested whether the SWISS is resistant to both atmospheric intrusion and leaking in both laboratory and field settings. We assessed the accuracy and precision of the SWISS through a series of experiments in which water vapor of known composition was introduced into the flasks, stored for 14 d, and then measured. From these experiments, after applying an offset correction to report our values relative to Vienna Standard Mean Ocean Water (VSMOW), we assess the precision of the SWISS to be ±0.9 ‰ and ±3.7 ‰ for δ18O and δ2H, respectively. We deployed three SWISS units at three different field sites to demonstrate that the SWISS stores water vapor reliably enough that we are able to differentiate dynamics both between the sites as well within a single soil column. Overall, we demonstrate that the SWISS retains the stable isotope composition of soil water vapor for long enough to allow researchers to address a wide range of ecohydrologic questions.
more »
« less
- Award ID(s):
- 2023385
- PAR ID:
- 10483010
- Publisher / Repository:
- European Geophysical Union
- Date Published:
- Journal Name:
- Hydrology and Earth System Sciences
- Volume:
- 27
- Issue:
- 15
- ISSN:
- 1607-7938
- Page Range / eLocation ID:
- 2951 to 2971
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pre-mixing of magma and external water plays a key role in driving explosive phreatomagmatic and submarine volcanic eruptions. A thin film of water vapor forms at the magma–water interface as soon as hot magma comes in direct contact with the cold water (Leidenfrost effect). The presence of a stable vapor film drives efficient mixing and mingling between magma and water, as well as magma and wet and water-saturated sediments. Such mixing occurs before explosive molten fuel–coolant type interactions. Using high-temperature laboratory experiments, we investigate the effect of magma and water temperatures on the stability of vapor film, which has not been performed systematically for a magmatic heat source. The experiments were performed with re-melted volcanic rock material, from which spherically-shaped rock samples were produced. These samples were heated to 1,110°C and then submerged in a water pool with a constant temperature (3–93°C). The experiments were recorded on video, and, synchronously, sample and water temperatures were measured using thermocouples. The time-dependent thickness of the vapor film was measured from the video material. The vapor film tends to oscillate with time on the order of 10 2 Hz. We find that the vertical collapse rates of vapor films along the sample–water interfaces are 13.7 mm s −1 and 4.2 mm s −1 for water temperatures of 3.0°C and 65°C, respectively. For a given initial sample temperature, the thickness and stability time scales decrease with decreasing water temperature, which has implications for the efficiency of pre-mixing required for explosive eruptions. Using thermodynamics and previously measured material parameters, it is shown that a sudden collapse of the vapor film can start brittle fragmentation of the melt and thus serves as the starting point of thermohydraulic explosions.more » « less
-
We incubated 10 forest soils (collected from sites across North America, including the Luquillo LTER/CZO) in the laboratory for over two years to quantify the decomposition of carbon derived from added litter and lignin, as well as from extant soil organic matter. Each soil was subjected to two substrate addition treatments: a) litter derived from a C4 grass precipitated with 13C-enriched lignin, or the same C4 grass litter was precipitated with natural-abundance lignin. The concentrations and delta13C composition of carbon dioxide produced from each soil were measured periodically over time and partitioned into sources (soil organic matter, litter, and added lignin) using isotope mixing models. The methods and results are described in detail by a manuscript in Ecology (Hall et al., 2020).more » « less
-
Abstract Historically, clumped isotope thermometry (T(∆47)) of soil carbonates has been interpreted to represent a warm‐season soil temperature based dominantly on coarse‐grained soils. Additionally, T(∆47) allows the calculation of the oxygen isotope composition of soil water (δ18Ow) in the past using the temperature‐dependent fractionation factor between soil water and pedogenic carbonate, but previous work has not measured δ18Owvalues with which to compare to these archives. Here, we present clumped isotope thermometry of modern soil carbonates from three soils in Colorado and Nebraska, USA, that have a fine‐to‐medium grain size, contain clay, and are representative of many carbonate‐bearing paleosols preserved in the rock record. At two of the three sites, Briggsdale, CO and Seibert, CO, T(∆47) overlaps with mean annual soil temperature (MAST), and the calculated δ18Owoverlaps within uncertainty with measured δ18Owat carbonate bearing depths. At the third site, in Oglala National Grassland, NE, mean T(∆47) is 8–11°C warmer than MAST, and the calculated δ18Owhas a significantly higher isotope value than any observations of δ18Ow. At all three sites, even in the fall season, δ18Owvalues at carbonate bearing depths overlap with spring rainfall δ18Ow, and there is little to no evaporative enrichment of δ2Hwand δ18Owvalues. These data challenge long‐held assumptions that all pedogenic carbonate records a warm‐season bias, and that δ18Owat carbonate‐bearing depths is affected by evaporative enrichment.more » « less
-
Atmospheric rivers (ARs), and frontal systems more broadly, tend to exhibit prominent “V” shapes in time series of stable isotopes in precipitation. Despite the magnitude and widespread nature of these “V” shapes, debate persists as to whether these shifts are driven by changes in the degree of rainout, which we determine using the Rayleigh distillation of stable isotopes, or by post-condensation processes such as below-cloud evaporation and equilibrium isotope exchange between hydrometeors and surrounding vapor. Here, we present paired precipitation and water vapor isotope time series records from the 5–7 March 2016, AR in Bodega Bay, CA. The stable isotope composition of surface vapor along with independent meteorological constraints such as temperature and relative humidity reveal that rainout and post-condensation processes dominate during different portions of the event. We find that Rayleigh distillation controls during peak AR conditions (with peak rainout of 55%) while post-condensation processes have their greatest effect during periods of decreased precipitation on the margins of the event. These results and analyses inform critical questions regarding the temporal evolution of AR events and the physical processes that control them at local scales.more » « less
An official website of the United States government

