The Carbon in Permafrost Experimental Heating Research (CiPEHR) project addresses the following questions: 1) Does ecosystem warming cause a net release of C from the ecosystem to the atmosphere?, 2) Does the decomposition of old C, that comprises the bulk of the soil C pool, influence ecosystem C loss?, and 3) How do winter and summer warming alone, and in combination, affect ecosystem C exchange? We are answering these questions using a combination of field and laboratory experiments to measure ecosystem carbon balance and radiocarbon isotope ratios at a warming experiment located in an upland tundra field site near Healy, Alaska in the foothills of the Alaska Range. This data set includes weekly thaw depth measurements collected from winter warming, summer warming, and control treatment plots at CiPEHR. Additional measurements from on-plot gas flux wells, water table monitoring wells, and off-plot locations are also reported. Note that the experimental warming portion of this experiment concluded in 2022. These data are a continuation of measurements taken at previously warmed plots but plots were not actively manipulated after 2022.
more »
« less
Eight Mile Lake Research Watershed, Carbon in Permafrost Experimental Heating Research (CiPEHR), Gradient, and Watershed: Dissolved Organic Carbon 2007-2022
The Carbon in Permafrost Experimental Heating Research (CiPEHR) project addresses the following questions: 1) Does ecosystem warming cause a net release of C from the ecosystem to the atmosphere?, 2) Does the decomposition of old C, that comprises the bulk of the soil C pool, influence ecosystem C loss?, and 3) How do winter and summer warming alone, and in combination, affect ecosystem C exchange? We are answering these questions using a combination of field and laboratory experiments to measure ecosystem carbon balance and radiocarbon isotope ratios at a warming experiment located in an upland tundra field site near Healy, Alaska in the foothills of the Alaska Range. This data set includes weekly thaw depth measurements collected from winter warming, summer warming, and control treatment plots at CiPEHR. Additional measurements from on-plot gas flux wells, water table monitoring wells, and off-plot locations are also reported. Note that the experimental warming portion of this experiment concluded in 2022. These data are a continuation of measurements taken at previously warmed plots but plots were not actively manipulated after 2022. At the Gradient Thaw Site, in this larger study, we are asking the question: Is old carbon that comprises the bulk of the soil organic matter pool released in response to thawing of permafrost? We are answering this question by using a combination of field and laboratory experiments to measure radiocarbon isotope ratios in soil organic matter, soil respiration, and dissolved organic carbon, in tundra ecosystems. The objective of these proposed measurements is to develop a mechanistic understanding of the SOM sources contributing to C losses following permafrost thawing. We are making these measurements at an established tundra field site near Healy, Alaska in the foothills of the Alaska Range. Field measurements center on a natural experiment where permafrost has been observed to warm and thaw over the past several decades. This area represents a gradient of sites each with a different degree of change due to permafrost thawing. As such, this area is unique for addressing questions at the time and spatial scales relevant for change in arctic ecosystems.
more »
« less
- Award ID(s):
- 2310630
- PAR ID:
- 10600889
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Location:
- EDI
- Institution:
- Bonanza Creek LTER
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this larger study, we are asking the question: Is old carbon that comprises the bulk of the soil organic matter pool released in response to thawing of permafrost? We are answering this question by using a combination of field and laboratory experiments to measure radiocarbon isotope ratios in soil organic matter, soil respiration, and dissolved organic carbon, in tundra ecosystems. The objective of these proposed measurements is to develop a mechanistic understanding of the SOM sources contributing to C losses following permafrost thawing. We are making these measurements at an established tundra field site near Healy, Alaska in the foothills of the Alaska Range. Field measurements center on a natural experiment where permafrost has been observed to warm and thaw over the past several decades. This area represents a gradient of sites each with a different degree of change due to permafrost thawing. As such, this area is unique for addressing questions at the time and spatial scales relevant for change in arctic ecosystems.more » « less
-
Abstract Accelerated warming of the Arctic can affect the global climate system by thawing permafrost and exposing organic carbon in soils to decompose and release greenhouse gases into the atmosphere. We used a process-based biosphere model (DVM-DOS-TEM) designed to simulate biophysical and biogeochemical interactions between the soil, vegetation, and atmosphere. We varied soil and environmental parameters to assess the impact on cryohydrological and biogeochemical outputs in the model. We analyzed the responses of ecosystem carbon balances to permafrost thaw by running site-level simulations at two long-term tundra ecological monitoring sites in Alaska: Eight Mile Lake (EML) and Imnavait Creek Watershed (IMN), which are characterized by similar tussock tundra vegetation but differing soil drainage conditions and climate. Model outputs showed agreement with field observations at both sites for soil physical properties and ecosystem CO2fluxes. Model simulations of Net Ecosystem Exchange (NEE) showed an overestimation during the frozen season (higher CO2emissions) at EML with a mean NEE of 26.98 ± 4.83 gC/m2/month compared to observational mean of 22.01 ± 5.67 gC/m2/month, and during the fall months at IMN, with a modeled mean of 19.21 ± 7.49 gC/m2/month compared to observation mean of 11.9 ± 4.45 gC/m2/month. Our results underscore the importance of representing the impact of soil drainage conditions on the thawing of permafrost soils, particularly poorly drained soils, which will drive the magnitude of carbon released at sites across the high-latitude tundra. These findings can help improve predictions of net carbon releases from thawing permafrost, ultimately contributing to a better understanding of the impact of Arctic warming on the global climate system.more » « less
-
Abstract Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13‐year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend with a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO2fluxes throughout the 13‐year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP,Reco, and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes.more » « less
-
The permafrost region has accumulated organic carbon in cold and waterlogged soils over thousands of years and now contains three times as much carbon as the atmosphere. Global warming is degrading permafrost with the potential to accelerate climate change as increased microbial decomposition releases soil carbon as greenhouse gases. A 19-year time series of soil and ecosystem respiration radiocarbon from Alaska provides long-term insight into changing permafrost soil carbon dynamics in a warmer world. Nine per cent of ecosystem respiration and 23% of soil respiration observations had radiocarbon values more than 50‰ lower than the atmospheric value. Furthermore, the overall trend of ecosystem and soil respiration radiocarbon values through time decreased more than atmospheric radiocarbon values did, indicating that old carbon degradation was enhanced. Boosted regression tree analyses showed that temperature and moisture environmental variables had the largest relative influence on lower radiocarbon values. This suggested that old carbon degradation was controlled by warming/permafrost thaw and soil drying together, as waterlogged soil conditions could protect soil carbon from microbial decomposition even when thawed. Overall, changing conditions increasingly favoured the release of old carbon, which is a definitive fingerprint of an accelerating feedback to climate change as a consequence of warming and permafrost destabilization. This article is part of the Theo Murphy meeting issue ‘Radiocarbon in the Anthropocene’.more » « less