skip to main content


Title: Strong Upper‐Plate Heterogeneity at the Hikurangi Subduction Margin (North Island, New Zealand) Imaged by Adjoint Tomography
Abstract

We use earthquake‐based adjoint tomography to invert for three‐dimensional structure of the North Island, New Zealand, and the adjacent Hikurangi subduction zone. The study area, having a shallow depth to the plate interface below the North Island, offers a rare opportunity for imaging material properties at an active subduction zone using land‐based measurements. Starting from an initial model derived using ray tomography, we perform iterative model updates using spectral element and adjoint simulations to fit waveforms with periods ranging from 4–30 s. We perform 28 model updates using an L‐BFGS optimization algorithm, improving data fit and introducingP‐ andS‐wave velocity changes of up to ±30%. Resolution analysis using point spread functions show that our measurements are most sensitive to heterogeneities in the upper 30 km. The most striking velocity changes coincide with areas related to the active Hikurangi subduction zone. Lateral velocity structures in the upper 5 km correlate well with New Zealand geology. The inversion reveals increased along‐strike heterogeneity on the margin. In Cook Strait we observe a low‐velocity zone interpreted as deep sedimentary basins. In the central North Island, low‐velocity anomalies are linked to surface geology, and we relate velocity structures at depth to crustal magmatic activity below the Taupō Volcanic Zone. Our velocity model provides more accurate synthetic seismograms with respect to the initial model, better constrains small (50 km), shallow (15 km) and near‐offshore velocity structures, and improves our understanding of volcanic and tectonic structures related to the active Hikurangi subduction zone.

 
more » « less
Award ID(s):
2052839
NSF-PAR ID:
10483042
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Journal of Geophysical Research
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
1
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Indo‐Burma subduction zone is a highly oblique subduction system where the Indian plate is converging with the Eurasian plate. How strain is partitioned between the Indo‐Burma interface and upper plate Kabaw Fault, and whether the megathrust is a locked and active zone of convergence that can generate great earthquakes are ongoing debates. Here, we use data from a total of 68 Global Navigation Satellite System (GNSS) stations, including newly installed stations across the Kabaw Fault and compute an updated horizontal and vertical GNSS velocity field. We correct vertical rates for fluctuating seasonal signals by accounting for the elastic response of monsoon water on the crust. We model the geodetic data by inverting for 11,000 planar and non‐planar megathrust fault geometries and two geologically viable structural interpretations of the Kabaw Fault that we construct from field geological data, considering a basin‐scale wedge‐fault and a crustal‐scale reverse fault. We demonstrate that the Indo‐Burma megathrust is locked, converging at a rate ofmm/yr, and capable of hosting >8.2Mwmegathrust events. We also show that the Kabaw Fault is locked and accommodating strike‐slip motion at a rate ofmm/yr and converging at a rate ofmm/yr. Our interpretation of the geological, geophysical, and geodetic datasets indicates the Kabaw Fault is a crustal‐scale structure that actively absorbs a portion of the convergence previously ascribed to the Indo‐Burma megathrust. This reveals a previously unrecognized seismic hazard associated with the Kabaw Fault and slightly reduces the estimated hazard posed by megathrust earthquakes in the region.

     
    more » « less
  2. Abstract

    The biggest volcanic eruption since 1991 happened on 15 January 2022 on the island of Hunga Tonga‐Hunga Haʻapai (20.6°S; 175.4°W) in the South Pacific between 4:00 and 4:16 UT. The updrafts from the eruption reached 58 km height. In order to observe its ionospheric effects, approximately 750 GNSS receivers in New Zealand and Australia were used to calculate the detrended total electron content (dTEC). Traveling ionospheric disturbances (TIDs) were observed over New Zealand 1.0–1.5 hr after the volcano eruption, with a horizontal wavelength () of 1,525 km, horizontal phase velocity () of 635 m/s, period (τ) of 40 min, and azimuth (α) of 214°. On the other hand, TIDs were observed 2–3 hr after the eruption in Australia with,,τ, andαof 922 km, 375 m/s, 41 min, and 266°, respectively. Using reverse ray tracing, we found that these GWs originated atz > 100 km at a location ∼500 km south of Tonga, in agreement with model results for the location of a large amplitude body force created from the breaking of primary GWs from the eruption. Thus, we found that these fast GWs were secondary, not primary GWs from the Tonga eruption.

     
    more » « less
  3. Abstract

    A new azimuthal anisotropy model for the North American and Caribbean Plates, namely,, is constructed based on full waveform inversion and records from the USArray and other temporary/permanent networks deployed in the study region. A total of 180 earthquakes and 4,516 seismographic stations are employed in the inversion to simultaneously constrain radially and azimuthally anisotropic model parameters:,,, and, within the crust and mantle. Thirty‐two preconditioned conjugate gradient iterations have been utilized to minimize frequency‐dependent phase discrepancies between observed and predicted seismograms for three‐component short‐period (15–40 s) body waves and long‐period (25–100 s) surface waves. Modelexhibits complicated variations in anisotropic fabrics underneath the western and eastern United States, especially at depths shallower than 100 km. For instance, the fast axis orientations in modelsuggest the presence of trench‐perpendicular mantle flows underneath the Cascadia Subduction Zone and also follow the strikes of the Snake River Plain, the Ouachita Orogenic Front, and the Grenville and Appalachian Orogenic Belts. The amplitudes of azimuthal anisotropy reduce to around 1% at depths greater than 200 km, and the orientations are subparallel to the global plate motion directions to the east of the Rocky Mountain, except for large discrepancies in central and eastern Canada. At a depth of 700 km, the fast axes change along the trajectory of the Farallon slab underneath the Great Lakes region and Gulf of Mexico, which might indicate the development of 2‐D poloidal‐mode mantle flows perpendicular to the strike of the sinking slab within the uppermost lower mantle. Comparisons between modelwith a western U.S. model from ambient noise tomography and SKS splitting measurements demonstrate a relatively good agreement for the fast axis orientations, considering the usage of different data sets and imaging techniques. However, the absolute magnitude of azimuthal anisotropy in modelmight be underestimated, especially at greater depths, given the poor agreement on the amplitudes of predicted and observed SKS splitting times. At the current stage, the agreement among different azimuthal anisotropy models at global and continental scales is still poor even for the United States with a dense station coverage.

     
    more » « less
  4. Abstract

    Seamounts are found at many subduction zones and act as seafloor heterogeneities that affect slip behavior on megathrusts. At the Hikurangi subduction zone offshore the North Island, New Zealand, seamounts have been identified on the incoming Pacific plate and below the accretionary prism, but there is little concrete evidence for seamounts subducted beyond the present‐day coastline. Using a high‐resolution, adjoint tomography‐derived velocity model of the North Island, we identify two high‐velocity anomalies below the East Coast and an intraslab low‐velocity zone up‐dip of one of these anomalies. We interpret the high‐velocity anomalies as previously unidentified, deeply subducted seamounts, and the low‐velocity zone as fluid in the subducting slab. The seamounts are inferred to be 10–30 km wide and on the plate interface at 12–15 km depth. Resolution analysis using point spread functions confirms that these are well‐resolved features. The locations of the two seamounts coincide with bathymetric features whose geometries are consistent with those predicted from analog experiments and numerical simulations of seamount subduction. The spatial characteristics of seismicity and slow slip events near the inferred seamounts agree well with previous numerical modeling predictions of the effects of seamount subduction on megathrust stress and slip. Anomalous geophysical signatures, magnetic anomalies, and swarm seismicity have also been observed previously at one or both seamount locations. We propose that permanent fracturing of the northern Hikurangi upper plate by repeated seamount subduction may be responsible for the dichotomous slow slip behavior observed geodetically, and partly responsible for along‐strike variations in plate coupling on the Hikurangi subduction interface.

     
    more » « less
  5. Abstract

    Shear attenuation provides insights into the physical and chemical state of the upper mantle. Yet, observations of attenuation are infrequent in the oceans, despite recent proliferation of arrays of ocean‐bottom seismometers (OBSs). Studies of attenuation in marine environments must overcome unique challenges associated with strong oceanographic noise at the seafloor and data loss during OBS recovery in addition to untangling the competing influences of elastic focusing, local site amplification, and anelastic attenuation on surface‐wave amplitudes. We apply Helmholtz tomography to OBS data to simultaneously resolve array‐averaged Rayleigh wave attenuation and maps of site amplification at periods of 20–150 s. The approach explicitly accounts for elastic focusing and defocusing due to lateral velocity heterogeneity using wavefield curvature. We validate the approach using realistic wavefield simulations at the NoMelt Experiment and Juan de Fuca (JdF) plate, which represent endmember open‐ocean and coastline‐adjacent environments, respectively. Focusing corrections are successfully recovered at both OBS arrays, including at periods <35 s at JdF where coastline effects result in strong multipathing. When applied to real data, our observations of Rayleigh wave attenuation at NoMelt and JdF revise previous estimates. At NoMelt, we observe a low attenuation lithospheric layer (> 1,500) overlying a highly attenuating asthenospheric layer (∼ 50 to 70). At JdF, we find a broad peak in attenuation (∼ 50 to 60) centered at a depth of 100–130 km. We also report strong local site amplification at the JdF Ridge (>10% at 31 s period), which can be used to refine models of crust and shallow mantle structure.

     
    more » « less