skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Spectrum of quantum KdV hierarchy in the semiclassical limit
A<sc>bstract</sc>

We employ semiclassical quantization to calculate spectrum of quantum KdV charges in the limit of large central chargec. Classically, KdV chargesQ2n−1generate completely integrable dynamics on the co-adjoint orbit of the Virasoro algebra. They can be expressed in terms of action variablesIk, e.g. as a power series expansion. Quantum-mechanically this series becomes the expansion in 1/c, while action variables become integer-valued quantum numbersni. Crucially, classical expression, which is homogeneous inIk, acquires quantum corrections that include terms of subleading powers innk. At first two non-trivial orders in 1/cexpansion these “quantum” terms can be fixed from the analytic form ofQ2n−1acting on the primary states. In this way we find explicit expression for the spectrum ofQ2n−1up to first three orders in 1/cexpansion. We apply this result to study thermal expectation values ofQ2n−1and free energy of the KdV Generalized Gibbs Ensemble.

 
more » « less
Award ID(s):
2013812
NSF-PAR ID:
10483044
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer (Journal of High Energy Physics)
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
9
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To expand the range of donor atoms known to stabilize 4fn5d1Ln(ii) ions beyond C, N, and O first row main group donor atoms, the Ln(iii) terphenylthiolate iodides, LnIII(SAriPr6)2I (AriPr6= C6H3-2,6-(C6H2-2,4,6-iPr3)2, Ln = La, Nd) were reduced to LnII(SAriPr6)2complexes.

     
    more » « less
  2. Abstract

    We use medium-resolution Keck/Echellette Spectrograph and Imager spectroscopy of bright quasars to study cool gas traced by Caiiλλ3934, 3969 and Naiλλ5891, 5897 absorption in the interstellar/circumgalactic media of 21 foreground star-forming galaxies at redshifts 0.03 <z< 0.20 with stellar masses 7.4 ≤ logM*/M≤ 10.6. The quasar–galaxy pairs were drawn from a unique sample of Sloan Digital Sky Survey quasar spectra with intervening nebular emission, and thus have exceptionally close impact parameters (R< 13 kpc). The strength of this line emission implies that the galaxies’ star formation rates (SFRs) span a broad range, with several lying well above the star-forming sequence. We use Voigt profile modeling to derive column densities and component velocities for each absorber, finding that column densitiesN(Caii) > 1012.5cm−2(N(Nai) > 1012.0cm−2) occur with an incidencefC(Caii) = 0.63+0.10−0.11(fC(Nai) = 0.57+0.10−0.11). We find no evidence for a dependence offCor the rest-frame equivalent widthsWr(CaiiK) orWr(Nai5891) onRorM*. Instead,Wr(CaiiK) is correlated with local SFR at >3σsignificance, suggesting that Caiitraces star formation-driven outflows. While most of the absorbers have velocities within ±50 km s−1of the host redshift, their velocity widths (characterized by Δv90) are universally 30–177 km s−1larger than that implied by tilted-ring modeling of the velocities of interstellar material. These kinematics must trace galactic fountain flows and demonstrate that they persist atR> 5 kpc. Finally, we assess the relationship between dust reddening andWr(CaiiK) (Wr(Nai5891)), finding that 33% (24%) of the absorbers are inconsistent with the best-fit Milky WayE(B−V)-Wrrelations at >3σsignificance.

     
    more » « less
  3. Abstract

    M82 is an archetypal starburst galaxy in the local Universe. The central burst of star formation, thought to be triggered by M82's interaction with other members in the M81 group, is driving a multiphase galaxy-scale wind away from the plane of the disk that has been studied across the electromagnetic spectrum. Here, we present new velocity-resolved observations of the [Cii] 158μm line in the central disk and the southern outflow of M82 using the upGREAT instrument on board SOFIA. We also report the first detections of velocity-resolved (ΔV= 10 km s−1) [Cii] emission in the outflow of M82 at projected distances of ≈1–2 kpc south of the galaxy center. We compare the [Cii] line profiles to observations of CO and Hiand find that likely the majority (>55%) of the [Cii] emission in the outflow is associated with the neutral atomic medium. We find that the fraction of [Cii] actually outflowing from M82 is small compared to the bulk gas outside the midplane (which may be in a halo or tidal streamers), which has important implications for observations of [Cii] outflows at higher redshift. Finally, by comparing the observed ratio of the [Cii] and CO intensities to models of photodissociation regions, we estimate that the far-ultraviolet (FUV) radiation field in the disk is ∼103.5G0, in agreement with previous estimates. In the outflow, however, the FUV radiation field is 2–3 orders of magnitudes lower, which may explain the high fraction of [Cii] arising from the neutral medium in the wind.

     
    more » « less
  4. A<sc>bstract</sc>

    We present a quantum M2 brane computation of the instanton prefactor in the leading non-perturbative contribution to the ABJM 3-sphere free energy at largeNand fixed levelk. Using supersymmetric localization, such instanton contribution was found earlier to take the form$$ {F}^{inst}\left(N,k\right)=-{\left({\sin}^2\frac{2\pi }{k}\right)}^{-1}\exp \left(-2\pi \sqrt{\frac{2N}{k}}\right)+.\dots $$FinstNk=sin22πk1exp2π2Nk+.The exponent comes from the action of an M2 brane instanton wrapped onS3/ℤk, which represents the M-theory uplift of the ℂP1instanton in type IIA string theory on AdS4× ℂP3. The IIA string computation of the leading largekterm in the instanton prefactor was recently performed in arXiv:2304.12340. Here we find that the exact value of the prefactor$$ {\left({\sin}^2\frac{2\pi }{k}\right)}^{-1} $$sin22πk1is reproduced by the 1-loop term in the M2 brane partition function expanded near theS3/ℤkinstanton configuration. As in the Wilson loop example in arXiv:2303.15207, the quantum M2 brane computation is well defined and produces a finite result in exact agreement with localization.

     
    more » « less
  5. Abstract

    With ΣSFR∼ 4200Myr−1kpc−2, SPT 0346–52 (z= 5.7) is the most intensely star-forming galaxy discovered by the South Pole Telescope. In this paper, we expand on previous spatially resolved studies, using ALMA observations of dust continuum, [Nii] 205μm, [Cii] 158μm, [Oi] 146μm, and undetected [Nii] 122μm and [Oi] 63μm emission to study the multiphase interstellar medium (ISM) in SPT 0346–52. We use pixelated, visibility-based lens modeling to reconstruct the source-plane emission. We also model the source-plane emission using the photoionization codecloudyand find a supersolar metallicity system. We calculateTdust= 48.3 K andλpeak= 80μm and see line deficits in all five lines. The ionized gas is less dense than comparable galaxies, withne< 32 cm−3, while ∼20% of the [Cii] 158μm emission originates from the ionized phase of the ISM. We also calculate the masses of several phases of the ISM. We find that molecular gas dominates the mass of the ISM in SPT 0346–52, with the molecular gas mass ∼4× higher than the neutral atomic gas mass and ∼100× higher than the ionized gas mass.

     
    more » « less