skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Visual Assessment of 2-Dimensional Levels Within 3-Dimensional Pathology Data Sets of Prostate Needle Biopsies Reveals Substantial Spatial Heterogeneity
Prostate cancer prognostication largely relies on visual assessment of a few thinly sectioned biopsy specimens under a microscope to assign a Gleason grade group (GG). Unfortunately, the assigned GG is not always associated with a patient’s outcome in part because of the limited sampling of spatially heterogeneous tumors achieved by 2-dimensional histopathology. In this study, open-top light-sheet microscopy was used to obtain 3-dimensional pathology data sets that were assessed by 4 human readers. Intrabiopsy variability was assessed by asking readers to perform Gleason grading of 5 different levels per biopsy for a total of 20 core needle biopsies (ie, 100 total images). Intrabiopsy variability (Cohen k) was calculated as the worst pairwise agreement in GG between individual levels within each biopsy and found to be 0.34, 0.34, 0.38, and 0.43 for the 4 pathologists. These preliminary results reveal that even within a 1-mm-diameter needle core, GG based on 2-dimensional images can vary dramatically depending on the location within a biopsy being analyzed. We believe that morphologic assessment of whole biopsies in 3 dimension has the potential to enable more reliable and consistent tumor grading.  more » « less
Award ID(s):
1934292
PAR ID:
10483093
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
USCAP
Date Published:
Journal Name:
Laboratory Investigation
Volume:
103
Issue:
12
ISSN:
0023-6837
Page Range / eLocation ID:
100265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation–assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning–based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. Significance:An end-to-end pipeline for deep learning–assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer. 
    more » « less
  2. null (Ed.)
    This work presents an interventional planning software to be used in conjunction with a robotic manipulator to perform transrectal MR guided prostate biopsies. The interventional software was designed taking in consideration a generic manipulator used under the two modes of operation: side-firing and end-firing of the biopsy needle. Studies were conducted with urologists using the software to plan virtual biopsies. The results show features of software relevant for operating efficiently under the two modes of operation. 
    more » « less
  3. Abstract The prognostic and therapeutic value of the tumor microenvironment (TME) in various cancer types is of major interest. Characterization of the TME often relies on a small representative tissue sample. However, the adequacy of such a sample for assessing components of the TME is not yet known. Here, we used immunohistochemical (IHC) staining and 7-color multiplex staining to evaluate CD8 (cluster of differentiation 8), CD68, PD-L1 (programmed death-ligand 1), CD34, FAP (fibroblast activation protein), and cytokeratin in 220 tissue cores from 26 high-grade serous ovarian cancer samples. Comparisons were drawn between a larger tumor specimen and smaller core biopsies based on number and location (central tumor vs. peripheral tumor) of biopsies. Our analysis found that the correlation between marker-specific cell subsets in larger tumorversussmaller core was stronger with two core biopsies and was not further strengthened with additional biopsies. Moreover, this correlation was consistently strong regardless of whether the biopsy was taken at the center or at the periphery of the original tumor sample. These findings could have a substantial impact on longitudinal assessment for detection of biomarkers in clinical trials. 
    more » « less
  4. Abstract RationaleStable isotope analysis (SIA) of free‐swimming mysticetes using biopsies is often limited in sample size and uses only one sample per individual, failing to capture both intra‐individual variability and the influence of demographic and physiological factors on isotope ratios. MethodsWe applied SIA of δ13C and δ15N to humpback whale (Megaptera novaeangliae) biopsies taken during the foraging season along the western Antarctic Peninsula to quantify intra‐individual variation from repeatedly sampled individuals, as well as to determine the effect of biopsy collection site, sex, and pregnancy on isotope ratios. ResultsThere was substantial variability in δ13C from multiple biopsies taken from the same individuals, though δ15N was much more consistent. Side of the body (left versus right) and biopsy location (dorsal, anterior, ventral, and posterior) did marginally affect the isotopic composition of δ15N but not δ13C. Pregnancy had a significant effect on both δ13C and δ15N, where pregnant females were depleted in both when compared to non‐pregnant females and males. ConclusionsThese results indicate that isotopic signatures are influenced by multiple endogenous and exogenous factors and emphasize value in accounting for intra‐individual variability and pregnancy status within a sampled population. Placed within an ecological context, the endogenous variability in δ13C observed here may be informative for future isotopic analyses. 
    more » « less
  5. Abstract Background Low specificity in current breast imaging modalities leads to increased unnecessary follow-ups and biopsies. The purpose of this study is to evaluate the efficacy of combining the quantitative parameters of high-definition microvasculature imaging (HDMI) and 2D shear wave elastography (SWE) with clinical factors (lesion depth and age) for improving breast lesion differentiation. Methods In this prospective study, from June 2016 through April 2021, patients with breast lesions identified on diagnostic ultrasound and recommended for core needle biopsy were recruited. HDMI and SWE were conducted prior to biopsies. Two new HDMI parameters, Murray’s deviation and bifurcation angle, and a new SWE parameter, mass characteristic frequency, were included for quantitative analysis. Lesion malignancy prediction models based on HDMI only, SWE only, the combination of HDMI and SWE, and the combination of HDMI, SWE and clinical factors were trained via elastic net logistic regression with 70% (360/514) randomly selected data and validated with the remaining 30% (154/514) data. Prediction performances in the validation test set were compared across models with respect to area under the ROC curve as well as sensitivity and specificity based on optimized threshold selection. Results A total of 508 participants (mean age, 54 years ± 15), including 507 female participants and 1 male participant, with 514 suspicious breast lesions (range, 4–72 mm, median size, 13 mm) were included. Of the lesions, 204 were malignant. The SWE-HDMI prediction model, combining quantitative parameters from SWE and HDMI, with AUC of 0.973 (95% CI 0.95–0.99), was significantly higher than the result predicted with the SWE model or HDMI model alone. With an optimal cutoff of 0.25 for the malignancy probability, the sensitivity and specificity were 95.5% and 89.7%, respectively. The specificity was further improved with the addition of clinical factors. The corresponding model defined as the SWE-HDMI-C prediction model had an AUC of 0.981 (95% CI 0.96–1.00). Conclusions The SWE-HDMI-C detection model, a combination of SWE estimates, HDMI quantitative biomarkers and clinical factors, greatly improved the accuracy in breast lesion characterization. 
    more » « less