High-resolution Digital Image Correlation (HR-DIC) was performed on an Inconel 718 specimen, which was subjected to a heat treatment to form a fully solutionized system. In-situ measurements in the small strain regime were made through SEM imaging, followed by HR-DIC to extract quantitative representations of the strain and in-plane displacement induced by deformation events during plastic deformation.
more »
« less
Deformation Behavior of Grains Near Defects in Direct Metal Laser Sintered Inconel 718 During Indentation
Abstract The present work utilizes Orientation Imaging Microscopy and Finite Element Modelling to analyse microstructure evolution in grains near defects during plane strain indentation of direct metal laser sintered Inconel 718. Defects are inevitably produced during printing of metals and they degrade the mechanical behaviour of parent components. Understanding microstructure evolution of grains present near defects can help create better predictive models of mechanical behaviour of components resulting from additive manufacturing. In this work, an ex-situ study of microstructure evolution during plane strain indentation of DMLS Inconel 718 specimens is performed. Regions that lie near volumetric porosity defects were studied. Grain Orientation Spread was utilized as a metric to quantify intra-granular deformation. It was seen that microstructure evolution of grains near defects is enhanced due to strain concentrations whereby they exhibit larger orientation spread after plastic deformation. Finite Element Analysis was used to simulate the plane strain indentation test on the specimen in which, porosity defects and roughness textures similar to those seen in the as-received specimen were programmed using the python scripting interface of Abaqus. Results from finite element analysis were compared with insights from microstructure analysis to describe evolution of microstructure during deformation near defects.
more »
« less
- Award ID(s):
- 1825686
- PAR ID:
- 10483142
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- Journal Name:
- Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference MSEC2020
- ISBN:
- 978-0-7918-8425-6
- Format(s):
- Medium: X
- Location:
- Virtual, Online
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Microstructure evolution modeling using finite element crystal plasticity (FECP), Monte- Carlo (MC), and phase field (PF) methods are being used to simulate microstructure evolution in Ti-6Al-4V under thermomechanical loading conditions. FECP is used to simulate deformation induced evolution of the microstructure and compute heterogeneous stored energy providing additional source of energy to MC and PF models. The MC grain growth model, calibrated using literature and experimental data, is used to simulate α+𝛽 grain growth. A multi-phase field, augmented with crystallographic symmetry and orientation relationship between α-𝛽, is employed to model simultaneous evolution and growth of all twelve α-variants in 3D. The influence of transformation and coherency strain energy on α-variant selection is studied by coupling the model with the Khachaturyan-Shatalov formalism for elastic strain calculation. This FECP/MC/PF suite will be able to simulate evolution of grains in the microstructure and within individual 𝛽- grains during typical thermomechanical processing conditions.more » « less
-
ABSTRACTElectro-chemical polishing (ECP) was utilized to produce sub-micron surface finish on Inconel 718 parts manufactured by Laser Powder-Bed-Fusion (L-PBF) and extrusion methods. The L-PBF parts had very rough surfaces due to semi-welded powder particles, surface defects, and difference layer steps that were generally not found on surfaces of extruded and machined components. This study compared the results of electro-polishing of these differently manufactured parts under the same conditions. Titanium electrode was used with an acid-based electrolyte to polish both the specimens at different combinations of pulsed current density, duty cycle, and polishing time. Digital 3D optical profiler was used to assess the surface finish, while optical and scanning electron microscopy was utilized to observe the microstructure of polished specimens. At optimal condition, the ECP successfully reduced the surface of L-PBF part from 17 µm to 0.25 µm; further polishing did not improve the surface finish due to different removal rates of micro-leveled pores, cracks, nonconductive phases, and carbide particles in 3D-printed Inconel 718. The microstructure of extruded materials was uniform and free of processing defects, therefore can be polished consistently to 0.20 µm. Over-polishing of extruded material could improve its surface finish, but not for the L-PBF material due to defects and the surrounding micro-strain.more » « less
-
Background Porosity and other defects resultant by additive manufacturing processes are well-known to affect mechanical properties. However, there remains limited understanding regarding how the internal defect structure influences the evolution of the local strain field, as experimental investigations have not presented direct measurements of the evolving internal strain field in the presence of defects. Objective Interrupted in-situ tensile tests in a lab-based X-ray computed tomography machine were used to investigate the evolution of the strain field around internal defects. The evolution of the internal strain field facilitated examination of the role of specific defects in the macroscopic deformation of additively manufactured tensile coupons. Methods Samples were produced in 316L stainless steel by laser powder bed fusion. An in situ loading device was utilized to subject the samples to tensile failure within a tomographic scanning environment. Digital volume correlation was utilized to directly determine local strain levels within the additively manufactured components in the vicinity of porosity defects. Results Effects of porosity on strain localization and eventual failure of the samples were evaluated. Characteristics of the porosity distribution, including presence of porosity at the surface or near-surface of components, as well as the proximity of pores to each other were found to influence the evolution of failure. Early onset of failure was found to be associated with the availability of neighboring porosity that allowed for rapid progression of the fracture path. Conclusions The direct measurements of strain field evolution in the present study established understanding regarding how internal defect structure characteristics influence the evolution of the local strain field for additively manufactured components. This high fidelity characterization and the associated phenomenological observations have bearing for supporting validation of numerical modeling frameworks for describing failure in these materials.more » « less
-
Grain size effects on the early plastic strain localization and slip transfer at grain boundaries were investigated for the Alloy 718 Ni-based superalloy at 650C. Three microstructures with different grain sizes underwent monotonic tensile tests at 650C, both in air and under vacuum, until rupture. All the microstructure variants exhibit fully intragranular fracture under vacuum and partially intergranular fracture in air. In this latter case, predominant intergranular fracture mode was found in the fine-grain microstructures. Interrupted tensile tests were also conducted under vacuum with ex-situ SEM high-resolution digital image correlation (HR-DIC) measurements to assess in-plane kinematics fields at the microstructure scale. Out-of-plane displacement jumps were obtained using laser scanning confocal microscopy. Both crystallographic slip within grains and near twin boundaries (TBs) and morphological sliding happening at grain boundaries (GBs) were documented. Statistical analysis of all plastic events aimed at quantifying strain localization distribution as a function of the microstructure. The fine-grain microstructure was found to have extensive strain localization at grain boundaries, while the coarse-grain microstructure is more prone to intragranular slip development and slip localization near TBs. Different scenarios of slip band/grain boundary interactions were evidenced.more » « less
An official website of the United States government

