skip to main content


Title: Impacts of sea ice melting procedures on measurements of microbial community structure

Microorganisms play critical roles in sea ice biogeochemical processes. However, microbes living within sea ice can be challenging to sample for scientific study. Because most techniques for microbial analysis are optimized for liquid samples, sea ice samples are typically melted first, often applying a buffering method to mitigate osmotic lysis. Here, we tested commonly used melting procedures on three different ice horizons of springtime, first year, land-fast Arctic sea ice to investigate potential methodological impacts on resulting measurements of cell abundance, photophysiology, and microbial community structure as determined by 16S and 18S rRNA gene amplicon sequencing. Specifically, we compared two buffering methods using NaCl solutions (“seawater,” melting the ice in an equal volume of 35-ppt solution, and “isohaline,” melting with a small volume of 250-ppt solution calculated to yield meltwater at estimated in situ brine salinity) to direct ice melting (no buffer addition) on both mechanically “shaved” and “non-shaved” samples. Shaving the ice shortened the melting process, with no significant impacts on the resulting measurements. The seawater buffer was best at minimizing cell lysis for this ice type, retaining the highest number of cells and chlorophyll a concentration. Comparative measurements of bacterial (16S) community structure highlighted ecologically relevant subsets of the community that were significantly more abundant in the buffered samples. The results for eukaryotic (18S) community structure were less conclusive. Taken together, our results suggest that an equivalent-volume seawater-salinity buffered melt is best at minimizing cell loss due to osmotic stress for springtime Arctic sea ice, but that either buffer will reduce bias in community composition when compared to direct melting. Overall, these findings indicate potential methodological biases that should be considered before developing a sea ice melting protocol for microbiological studies and afterwards, when interpreting biogeochemical or ecological meaning of the results.

 
more » « less
Award ID(s):
1821911
NSF-PAR ID:
10483220
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
UC Press
Date Published:
Journal Name:
Elementa: Science of the Anthropocene
Volume:
10
Issue:
1
ISSN:
2325-1026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This metadata links to 16S and 18S rRNA amplicon data (raw sequence reads, NCBI Accession PRJNA895866) for seawater, sea ice, meltwater, and experimental samples from the Central Arctic Ocean collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in which the RV (Research Vessel) Polarstern was tethered to drifting sea ice from October 2019 to September 2020. Seawater samples were collected from the water column using a CTD (conductivity-temperature-depth) rosette or underway seawater tap during legs 1, 2, 3, 4, and 5 of the expedition. Sea ice samples were collected via coring (FYI (first-year ice), SYI (second-year ice)) or scooped with a saw and/or sieve (new ice formation) during legs 1, 3, 4, and 5 of the expedition. Summer meltwater was from surface layers within leads or melt ponds and was collected using pump systems during legs 4 and 5 of the expedition. Experimental samples were filtered and processed post nutrient addition, stable isotope, or elevated methane incubations to pair community structure with biogeochemical measurements. Original data published with the National Center for Biotechnology Information: https://www.ncbi.nlm.nih.gov/bioproject/895866 ; Please contact data creators before use. 
    more » « less
  2. Abstract

    Seasonal cycles within the marginal ice zones in polar regions include large shifts in temperature and salinity that strongly influence microbial abundance and physiology. However, the combined effects of concurrent temperature and salinity change on microbial community structure and biochemical composition during transitions between seawater and sea ice are not well understood. Coastal marine communities along the western Antarctic Peninsula were sampled and surface seawater was incubated at combinations of temperature and salinity mimicking the formation (cold, salty) and melting (warm, fresh) of sea ice to evaluate how these factors may shape community composition and particulate metabolite pools during seasonal transitions. Bacterial and algal community structures were tightly coupled to each other and distinct across sea-ice, seawater, and sea-ice-meltwater field samples, with unique metabolite profiles in each habitat. During short-term (approximately 10-day) incubations of seawater microbial communities under different temperature and salinity conditions, community compositions changed minimally while metabolite pools shifted greatly, strongly accumulating compatible solutes like proline and glycine betaine under cold and salty conditions. Lower salinities reduced total metabolite concentrations in particulate matter, which may indicate a release of metabolites into the labile dissolved organic matter pool. Low salinity also increased acylcarnitine concentrations in particulate matter, suggesting a potential for fatty acid degradation and reduced nutritional value at the base of the food web during freshening. Our findings have consequences for food web dynamics, microbial interactions, and carbon cycling as polar regions undergo rapid climate change.

     
    more » « less
  3. The Arctic is rapidly warming and has transitioned to thinner sea ice which fractures, producing leads. Sea ice loss is expected to be increasing sea spray aerosol production in the High Arctic. Few studies have investigated Arctic sea spray aerosol (SSA) produced from open ocean, leads, and melt ponds, characterized by varied salinity, microbial community, and organic composition. The concentrations, size distributions, single-particle composition, and ice-nucleating activity of the SSA experimentally-generated were measured and compared to the chemical and biological properties of the surface waters. A marine aerosol reference tank (MART) was deployed aboard the Swedish Icebreaker Oden to the high Arctic Ocean during August – September 2018 to study SSA generated from locally-collected surface water. Surface water salinity, chlorophyll-a, organic carbon, nitrogen, and microbial community composition (18s and 16s DNA-derived, flow cytometry of nano- and picoplankton) data are submitted. Experimental aerosol data submitted include type, size, mole ratio, Raman spectra, Raman type, and ice nucleating particles. High resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry (FTICR-MS) data for surface water and experimentally-generated aerosol dissolved organic matter are included . 
    more » « less
  4. Abstract

    Sandy sediment beaches covering 70% of non‐ice‐covered coastlines are important ecosystems for nutrient cycling along the land‐ocean continuum. Subterranean estuaries (STEs), where groundwater and seawater meet, are hotspots for biogeochemical cycling within sandy beaches. The STE microbial community facilitates biogeochemical reactions, determining the fate of nutrients, including nitrogen (N), supplied by groundwater. Nitrification influences the fate of N, oxidising reduced dissolved inorganic nitrogen (DIN), making it available for N removal. We used metabarcoding of 16S rRNA genes and quantitative PCR (qPCR) of ammonia monooxygenase (amoA) genes to characterise spatial and temporal variation in STE microbial community structure and nitrifying organisms. We examined nitrifier diversity, distribution and abundance to determine how geochemical measurements influenced their distribution in STEs. Sediment microbial communities varied with depth (p‐value = 0.001) and followed geochemical gradients in dissolved oxygen (DO), salinity, pH, dissolved inorganic carbon and DIN. Genetic potential for nitrification in the STE was evidenced by qPCR quantification ofamoAgenes. Ammonia oxidiser abundance was best explained by DIN, DO and pH. Our results suggest that geochemical gradients are tightly linked to STE community composition and nitrifier abundance, which are important to determine the fate and transport of groundwater‐derived nutrients to coastal waters.

     
    more » « less
  5. Mercury (Hg) concentrations and speciation within surface waters of the Arctic Ocean are controlled by a complex set of processes including photochemical and microbial transformations, redox reactions, and air-sea exchange of gaseous and particulate Hg species. In this study, our aim was to estimate the magnitude of volatile Hg fluxes across the air-sea interface, and examine the influence of ice cover on this process. While gas exchange in the open ocean has been modeled as a function of wind speed, the parameterization is problematic in the presence of sea ice, which can physically block gas exchange, as well as reduce fetch and dampen waves. By using measurements of Radon-222 (Rn-222) gas and it parent isotope, Radium-226 (Ra-226), to accurately measure gas exchange velocities (k), the relative impacts of chemical and biological processes on mercury distributions within the surface waters can then be deduced. This dataset contains Radon-222 and Radium-226 activity concentrations from R/V Sikuliaq cruise SKQ202108S in the Bering Sea, through the Bering Strait, and in shelf waters of the Chukchi Sea during May – June 2021. Samples include seawater (16 water column profiles), as well as ice cores and brine from four ice stations. At the time of the cruise, sampling locations in the Bering Sea were ice free and gas transfer velocities (k) estimated from Rn-222 deficits (with respect to Ra-226 concentrations) were in general agreement with published parameterizations of k as a function of wind speed. The springtime retreating ice edge was located at 69-70 degrees north latitude in the Chukchi Sea, and sampling locations there were located along the ice edge, in areas of open water, and at sites within the pack ice up to ~10 kilometers (km) from the ice edge. Gas transfer velocities in the marginal ice zone also reflected recent wind histories, with k values generally at the high end of or exceeding those predicted from the wind speed parameterizations. 
    more » « less