As a promising approach to deal with distributed data, Federated Learning (FL) achieves major advancements in recent years. FL enables collaborative model training by exploiting the raw data dispersed in multiple edge devices. However, the data is generally non-independent and identically distributed, i.e., statistical heterogeneity, and the edge devices significantly differ in terms of both computation and communication capacity, i.e., system heterogeneity. The statistical heterogeneity leads to severe accuracy degradation while the system heterogeneity significantly prolongs the training process. In order to address the heterogeneity issue, we propose an Asynchronous Staleness-aware Model Update FL framework, i.e., FedASMU, with two novel methods. First, we propose an asynchronous FL system model with a dynamical model aggregation method between updated local models and the global model on the server for superior accuracy and high efficiency. Then, we propose an adaptive local model adjustment method by aggregating the fresh global model with local models on devices to further improve the accuracy. Extensive experimentation with 6 models and 5 public datasets demonstrates that FedASMU significantly outperforms baseline approaches in terms of accuracy (0.60% to 23.90% higher) and efficiency (3.54% to 97.98% faster).
more »
« less
Partitioned Active Learning for Heterogeneous Systems
Abstract Active learning is a subfield of machine learning that focuses on improving the data collection efficiency in expensive-to-evaluate systems. Active learning-applied surrogate modeling facilitates cost-efficient analysis of demanding engineering systems, while the existence of heterogeneity in underlying systems may adversely affect the performance. In this article, we propose the partitioned active learning that quantifies informativeness of new design points by circumventing heterogeneity in systems. The proposed method partitions the design space based on heterogeneous features and searches for the next design point with two systematic steps. The global searching scheme accelerates exploration by identifying the most uncertain subregion, and the local searching utilizes circumscribed information induced by the local Gaussian process (GP). We also propose Cholesky update-driven numerical remedies for our active learning to address the computational complexity challenge. The proposed method consistently outperforms existing active learning methods in three real-world cases with better prediction and computation time.
more »
« less
- Award ID(s):
- 2035038
- PAR ID:
- 10483241
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Computing and Information Science in Engineering
- Volume:
- 23
- Issue:
- 4
- ISSN:
- 1530-9827
- Page Range / eLocation ID:
- 041009
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Federated learning has emerged as an important paradigm for training machine learning models in different domains. For graph-level tasks such as graph classification, graphs can also be regarded as a special type of data samples, which can be collected and stored in separate local systems. Similar to other domains, multiple local systems, each holding a small set of graphs, may benefit from collaboratively training a powerful graph mining model, such as the popular graph neural networks (GNNs). To provide more motivation towards such endeavors, we analyze real-world graphs from different domains to confirm that they indeed share certain graph properties that are statistically significant compared with random graphs. However, we also find that different sets of graphs, even from the same domain or same dataset, are non-IID regarding both graph structures and node features. To handle this, we propose a graph clustered federated learning (GCFL) framework that dynamically finds clusters of local systems based on the gradients of GNNs, and theoretically justify that such clusters can reduce the structure and feature heterogeneity among graphs owned by the local systems. Moreover, we observe the gradients of GNNs to be rather fluctuating in GCFL which impedes high-quality clustering, and design a gradient sequence-based clustering mechanism based on dynamic time warping (GCFL+). Extensive experimental results and in-depth analysis demonstrate the effectiveness of our proposed frameworks.more » « less
-
Abstract In this paper, we propose a flexible nested error regression small area model with high-dimensional parameter that incorporates heterogeneity in regression coefficients and variance components. We develop a new robust small area-specific estimating equations method that allows appropriate pooling of a large number of areas in estimating small area-specific model parameters. We propose a parametric bootstrap and jackknife method to estimate not only the mean squared errors but also other commonly used uncertainty measures such as standard errors and coefficients of variation. We conduct both model-based and design-based simulation experiments and real-life data analysis to evaluate the proposed methodology.more » « less
-
The physics of solar flares occurring on the Sun is highly complex and far from fully understood. However, observations show that solar eruptions are associated with the intense kilogauss fields of active regions, where free energies are stored with field-aligned electric currents. With the advent of high-quality data sources such as the Geostationary Operational Environmental Satellites (GOES) and Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI), recent works on solar flare forecasting have been focusing on data-driven methods. In particular, black box machine learning and deep learning models are increasingly being adopted in which underlying data structures are not modeled explicitly. If the active regions indeed follow the same laws of physics, similar patterns should be shared among them, reflected by the observations. Yet, these black box models currently used in the literature do not explicitly characterize the heterogeneous nature of the solar flare data within and between active regions. In this paper, we propose two finite mixture models designed to capture the heterogeneous patterns of active regions and their associated solar flare events. With extensive numerical studies, we demonstrate the usefulness of our proposed method for both resolving the sample imbalance issue and modeling the heterogeneity for rare energetic solar flare events.more » « less
-
Data heterogeneity across clients in federated learning (FL) settings is a widely acknowledged challenge. In response, personalized federated learning (PFL) emerged as a framework to curate local models for clients' tasks. In PFL, a common strategy is to develop local and global models jointly - the global model (for generalization) informs the local models, and the local models (for personalization) are aggregated to update the global model. A key observation is that if we can improve the generalization ability of local models, then we can improve the generalization of global models, which in turn builds better personalized models. In this work, we consider class imbalance, an overlooked type of data heterogeneity, in the classification setting. We propose FedNH, a novel method that improves the local models' performance for both personalization and generalization by combining the uniformity and semantics of class prototypes. FedNH initially distributes class prototypes uniformly in the latent space and smoothly infuses the class semantics into class prototypes. We show that imposing uniformity helps to combat prototype collapse while infusing class semantics improves local models. Extensive experiments were conducted on popular classification datasets under the cross-device setting. Our results demonstrate the effectiveness and stability of our method over recent works.more » « less
An official website of the United States government

