skip to main content


Title: The Effect of Dicarboxylic Acid Catalyst Structure on Hydrolysis of CelluloseModel Compound D-Cellobiose in Water
Background:

Polycarboxylic acids are of interest as simple mimics for cellulase enzyme catalyzed depolymerization of cellulose. In this study, DFT calculations were used to investigate the effect of structure on dicarboxylic acid organo-catalyzed hydrolysis of cellulose model compound D-cellobiose to D-glucose.

Methods:

Binding energy of the complex formed between D-cellobiose and acid (Ebind), as well as glycosidic oxygen to dicarboxylic acid closest acidic H distance were studied as key parameters affecting the turn over frequency of hydrolysis in water.

Result:

α-D-cellobiose - dicarboxylic acid catalyst down face approach showed high Ebind values for five of the six acids studied; indicating the favorability of down face approach. Maleic, cis-1,2-cyclohexane dicarboxylic, and phthalic acids with the highest catalytic activities showed glycosidic oxygen to dicarboxylic acid acidic H distances 3.5-3.6 Å in the preferred configuration.

Conclusion:

The high catalytic activities of these acids may be due to the rigid structure, where acid groups are held in a fixed geometry.

 
more » « less
Award ID(s):
1704144
NSF-PAR ID:
10483283
Author(s) / Creator(s):
;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Current Organocatalysis
Volume:
9
Issue:
2
ISSN:
2213-3372
Page Range / eLocation ID:
163 to 171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Development of efficient catalytic methods for the hydrolysis of cellulose is a major research challenge in sustainable biofuel and polymer areas. In this study five hydroxy sulfonic acids were studied as simple model compounds for cellulase enzyme for the hydrolysis of cellulose. The catalytic activities were measured by analysis of total reducing sugar (TRS) yields produced in a series of reactions carried out at 150–190 °C using 0.050 M aqueous hydroxy sulfonic acid solutions. The highest catalytic activity was observed with isethionic acid, producing 62.7% TRS yield at 180 °C after 4 hr. In the second phase of the work, Density Functional Theory (DFT) calculations were used to study the interactions between hydroxy sulfonic acids and cellulose model compound D-cellobiose to supplement the experimental results. The D-cellobiose – hydroxy sulfonic binding energies and the distance between glycosidic oxygen and -SO3H acidic H were evaluated and the -SO3H to glycosidic oxygen distance was identified as the more important parameter co-related to the catalytic activity. The isethionic acid with highest cellulose hydrolysis activity showed the shortest -SO3H to glycosidic oxygen distance of 1.744 Å. 
    more » « less
  2. Abstract

    Recently, we reported the discovery of a novel endoglucanase of the glycoside hydrolase family 12 (GH12), designated IfCelS12A, from the haloalkaliphilic anaerobic bacteriumIocasia fonsfrigidaestrain SP3-1, which was isolated from a hypersaline pond in the Samut Sakhon province of Thailand (ca. 2017). IfCelS12A exhibits high substrate specificity on carboxymethyl cellulose and amorphous cellulose but low substrate specificity on b-1,3;1,4-glucan. Unlike some endoglucanases of the GH12 family, IfCelS12A does not exhibit hydrolytic activity on crystalline cellulose (i.e., Avicel™). High-Pressure Liquid Chromatography (HPLC) and Thin Layer Chromatography (TLC) analyses of products resulting from IfCelS12-mediated hydrolysis indicate mode of action for this enzyme. Notably, IfCelS12A preferentially hydrolyzes cellotetraoses, cellopentaoses, and cellohexaoses with negligible activity on cellobiose or cellotriose. Kinetic analysis with cellopentaose and barely b-d-glucan as cellulosic substrates were conducted. On cellopentaose, IfCelS12A demonstrates a 16-fold increase in activity (KM = 0.27 mM;kcat = 0.36 s−1;kcat/KM = 1.34 mM−1s−1) compared to the enzymatic hydrolysis of barley b-d-glucan (KM: 0.04 mM,kcat: 0.51 s−1,kcat/KM = 0.08 mM−1s−1). Moreover, IfCelS12A enzymatic efficacy is stable in hypersaline sodium chlorids (NaCl) solutions (up to 10% NaCl). Specifically, IfCel12A retains notable activity after 24 h at 2M NaCl (10% saline solution). IfCelS12A used as a cocktail component with other cellulolytic enzymes and in conjunction with mobile sequestration platform technology offers additional options for deconstruction of ionic liquid–pretreated cellulosic feedstock.

    Key points

    IfCelS12A from an anaerobic alkaliphile Iocasia fronsfrigidae shows salt tolerance

    IfCelS12A in cocktails with other enzymes efficiently degrades cellulosic biomass

    IfCelS12A used with mobile enzyme sequestration platforms enhances hydrolysis

     
    more » « less
  3. Abstract

    Understanding interactions of metal ions with cellulose is an important step in the development of efficient catalytic methods for processing cellulose. In this study, density functional theory methods were used to identify oxygen atoms interacting or chelating with selected metal chlorides of Li+, K+, Mg2+, Ca2+, Sn2+, Zn2+and La3+with cellulose model compound D‐cellobiose. Calculated metal‐oxygen distances of energy minimized D‐cellobiose : metal chloride 1 : 2 mixtures revealed that the metal ions approach between the two glucose rings in α/β‐D‐cellobiose, and O4, O9are the preferred interaction/chelation points. DFT study supported a previous13C NMR chemical shift change based experiments. ZnCl2showing the shortest metal‐oxygen distances in approach to α/β D‐cellobiose is known to produce the largest13C NMR chemical shift changes in D‐cellobiose. In α‐anomer, average closest metal‐oxygen distances and NMR shift changes co‐related at 95 % confidence interval with liner regression R2=0.8582 and Sy.x=0.5722.

     
    more » « less
  4. aims: Processing of cellulose can be used to produce value added renewable feedstock chemicals. background: Catalytic depolymerization and processing of cellulose can be used to produce value added renewable feedstock chemicals. objective: Development of an acidic ionic liquid - metal ion chloride catalyst system based single-reactor method for processing cellulose to value added products. method: The effect of metal chlorides as co-catalysts on 1-(1-propylsulfonic)-3-methylimidazolium chloride acidic ionic liquid catalyzed degradation of cellulose in 40 % (v/v) aq. ethanol was studied by measuring levulinic acid, ethyl levulinate and 5-hydroxymethylfurfural yields. result: In experiments with Mn(II), Zn(II) chloride co-catalysts at 160 and 170 °C for 12 h, the initial yields of ethyl levulinate and 5-hydroxymethylfurfural improved from ~ 7 % to ~ 12-15% due to co-catalytic effects. The highest enhancements in ethyl levulinate yields were observed with CrCl3, where the yield increased from 6 to 27 % with the addition of 10 mol% co-catalyst. conclusion: All three transition metal chlorides studied produced improvements in yields of secondary products, ethyl levulinate and 5-hydroxymethylfurfural in acidic ionic liquid catalyzed degradation of cellulose in aqueous ethanol. The most significant enhancements in ethyl levulinate yields were observed with CrCl3 as a co-catalyst. other: none 
    more » « less
  5. null (Ed.)
    Glycosidases are an important class of enzymes for performing the selective hydrolysis of glycans. Although glycans can be hydrolyzed in principle by acidic water, hydrolysis with high selectivity using nonenzymatic catalysts is an unachieved goal. Molecular imprinting in cross-linked micelles afforded water-soluble polymeric nanoparticles with a sugar-binding boroxole in the imprinted site. Post-modification installed an acidic group near the oxygen of the targeted glycosidic bond, with the acidity and distance of the acid varied systematically. The resulting synthetic glycosidase hydrolyzed oligosaccharides and polysaccharides in a highly controlled fashion simply in hot water. These catalysts not only broke down amylose with similar selectivities to those of natural enzymes, but they also could be designed to possess selectivity not available with biocatalysts. Substrate selectivity was mainly determined by the sugar residues bound within the active site, including their spatial orientations. Separation of the product was accomplished through in situ dialysis, and the catalysts left behind could be used multiple times with no signs of degradation. This work illustrates a general method to construct synthetic glycosidases from readily available building blocks via self-assembly, covalent capture, and post-modification. In addition, controlled, precise, one-step hydrolysis is an attractive way to prepare complex glycans from naturally available carbohydrate sources. 
    more » « less