skip to main content


This content will become publicly available on December 15, 2024

Title: Operator SVD with Neural Networks via Nested Low-Rank Approximation
This paper proposes an optimization-based method to learn the singular value decomposition (SVD) of a compact operator with ordered singular functions. The proposed objective function is based on Schmidt’s low-rank approximation theorem (1907) that characterizes a truncated SVD as a solution minimizing the mean squared error, accompanied with a technique called nesting to learn the ordered structure. When the optimization space is parameterized by neural networks, we refer to the proposed method as NeuralSVD. The implementation does not require sophisticated optimization tricks unlike existing approaches.  more » « less
Award ID(s):
1816209
NSF-PAR ID:
10483351
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the NeurIPS-2023 Workshop on Machine Learning for the Physical Sciences (ML4PS)
Date Published:
Journal Name:
Proc. NeurIPS 2023 Workshop on Machine Learning and the Physical Sciences (ML4PS)
Format(s):
Medium: X
Location:
New Orleans, LA
Sponsoring Org:
National Science Foundation
More Like this
  1. We discuss the use of the regularized linear discriminant analysis (LDA) as a model reduction technique combined with particle swarm optimization (PSO) in protein tertiary structure prediction, followed by structure refinement based on singular value decomposition (SVD) and PSO. The algorithm presented in this paper corresponds to the category of template-based modeling. The algorithm performs a preselection of protein templates before constructing a lower dimensional subspace via a regularized LDA. The protein coordinates in the reduced spaced are sampled using a highly explorative optimization algorithm, regressive–regressive PSO (RR-PSO). The obtained structure is then projected onto a reduced space via singular value decomposition and further optimized via RR-PSO to carry out a structure refinement. The final structures are similar to those predicted by best structure prediction tools, such as Rossetta and Zhang servers. The main advantage of our methodology is that alleviates the ill-posed character of protein structure prediction problems related to high dimensional optimization. It is also capable of sampling a wide range of conformational space due to the application of a regularized linear discriminant analysis, which allows us to expand the differences over a reduced basis set. 
    more » « less
  2. To analyze the abundance of multidimensional data, tensor-based frameworks have been developed. Traditionally, the matrix singular value decomposition (SVD) is used to extract the most dominant features from a matrix containing the vectorized data. While the SVD is highly useful for data that can be appropriately represented as a matrix, this step of vectorization causes us to lose the high-dimensional relationships intrinsic to the data. To facilitate efficient multidimensional feature extraction, we utilize a projection-based classification algorithm using the t-SVDM, a tensor analog of the matrix SVD. Our work extends the t-SVDM framework and the classification algorithm, both initially proposed for tensors of order 3, to any number of dimensions. We then apply this algorithm to a classification task using the StarPlus fMRI dataset. Our numerical experiments demonstrate that there exists a superior tensor-based approach to fMRI classification than the best possible equivalent matrix-based approach. Our results illustrate the advantages of our chosen tensor framework, provide insight into beneficial choices of parameters, and could be further developed for classification of more complex imaging data. We provide our Python implementation at https://github.com/elizabethnewman/tensor-fmri 
    more » « less
  3. (Early Access) Effective tissue clutter filtering is critical for non-contrast ultrasound imaging of slow blood flow in small vessels. Independent component analysis (ICA) has been considered by other groups for ultrasound clutter filtering in the past and was shown to be superior to principal component analysis (PCA)-based methods. However, it has not been considered specifically for slow flow applications or revisited since the onset of other slow flow-focused advancements in beamforming and tissue filtering, namely angled plane wave beamforming and full spatiotemporal singular value decomposition (SVD) (i.e., PCA-based) tissue filtering. In this work, we aim to develop a full spatiotemporal ICA-based tissue filtering technique facilitated by plane wave applications and compare it to SVD filtering. We compare ICA and SVD filtering in terms of optimal image quality in simulations and phantoms as well as in terms of optimal correlation to ground truth blood signal in simulations. Additionally, we propose an adaptive blood independent component sorting and selection method. We show that optimal and adaptive ICA can consistently separate blood from tissue better than principal component analysis (PCA)-based methods using simulations and phantoms. Additionally we demonstrate initial in vivo feasibility in ultrasound data of a liver tumor. 
    more » « less
  4. We discuss the use of the Singular Value Decomposition as a model reduction technique in Protein Tertiary Structure prediction, alongside to the uncertainty analysis associated to the tertiary protein predictions via Particle Swarm Optimization (PSO). The algorithm presented in this paper corresponds to the category of the decoy-based modelling, since it first finds a good protein model located in the low energy region of the protein energy landscape, that is used to establish a three-dimensional space where the free-energy optimization and search is performed via an exploratory version of PSO. The ultimate goal of this algorithm is to get a representative sample of the protein backbone structure and the alternate states in an energy region equivalent or lower than the one corresponding to the protein model that is used to establish the expansion (model reduction), obtaining as result other protein structures that are closer to the native structure and a measure of the uncertainty in the protein tertiary protein reconstruction. The strength of this methodology is that it is simple and fast, and serves to alleviate the ill-posed character of the protein structure prediction problem, which is very highly dimensional, improving the results when it is performed in a good protein model of the low energy region. To prove this fact numerically we present the results of the application of the SVD-PSO algorithm to a set of proteins of the CASP competition whose native’s structures are known. 
    more » « less
  5. Modern deep neural networks (DNNs) often require high memory consumption and large computational loads. In order to deploy DNN algorithms efficiently on edge or mobile devices, a series of DNN compression algorithms have been explored, including factorization methods. Factorization methods approximate the weight matrix of a DNN layer with the multiplication of two or multiple low-rank matrices. However, it is hard to measure the ranks of DNN layers during the training process. Previous works mainly induce low-rank through implicit approximations or via costly singular value decomposition (SVD) process on every training step. The former approach usually induces a high accuracy loss while the latter has a low efficiency. In this work, we propose SVD training, the first method to explicitly achieve low-rank DNNs during training without applying SVD on every step. SVD training first decomposes each layer into the form of its full-rank SVD, then performs training directly on the decomposed weights. We add orthogonality regularization to the singular vectors, which ensure the valid form of SVD and avoid gradient vanishing/exploding. Low-rank is encouraged by applying sparsity-inducing regularizers on the singular values of each layer. Singular value pruning is applied at the end to explicitly reach a low-rank model. We empirically show that SVD training can significantly reduce the rank of DNN layers and achieve higher reduction on computation load under the same accuracy, comparing to not only previous factorization methods but also state-of-the-art filter pruning methods. 
    more » « less