skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diversity and co-occurrence networks of bacterial and fungal communities on two typical debris-covered glaciers, southeastern Tibetan Plateau
Debris-covered glaciers (DCGs) are globally distributed and thought to contain greater microbial diversity than clean surface continental glaciers, but the ecological characteristics of microbial communities on the surface of DCGs have remained underexplored. Here, we investigated bacterial and fungal diversity and co-occurrence networks on the supraglacial debris habitat of two DCGs (Hailuogou and Dagongba Glaciers) in the southeastern Tibetan Plateau. We found that the supraglacial debris harbored abundant microbes with Proteobacteria occupying more than half (51.5%) of the total bacteria operational taxonomic units. The composition, diversity, and co-occurrence networks of both bacterial and fungal communities in the debris were significantly different between Hailuogou Glacier and Dagongba Glacier even though the glaciers are geographically adjacent within the same mountain range. Bacteria were more diverse in the debris of the Dagongba Glacier, where a lower surface velocity and thicker debris layer allowed the supraglacial debris to continuously weather and accumulate nutrients. Fungi were more diverse in the debris of the Hailuogou Glacier, which experiences a wetter monsoonal climate, is richer in calcium, has greater debris instability, and greater ice velocity than the Dagongba Glacier. These factors may provide ideal conditions for the dispersal and propagation of fungi spores on the Hailuogou Glacier. In addition, we found an obvious gradient of bacterial diversity along the supraglacial debris transect on the Hailuogou Glacier. Bacterial diversity was lower where debris cover was thin and scattered and became more diverse near the glacial terminus in thick, slow-moving debris. No such increasing bacterial pattern was detected on the Dagongba Glacier, which implies a positive relationship of debris age, thickness, and weathering on bacterial diversity. Additionally, a highly connected bacterial co-occurrence network with low modularity was found in the debris of the Hailuogou Glacier. In contrast, debris from the Dagongba Glacier exhibited less connected but more modularized co-occurrence networks of both bacterial and fungal communities. These findings indicate that less disturbed supraglacial debris conditions are crucial for microbes to form stable communities on DCGs.  more » « less
Award ID(s):
2010852
PAR ID:
10483412
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Microbiological Research
Volume:
273
Issue:
C
ISSN:
0944-5013
Page Range / eLocation ID:
127409
Subject(s) / Keyword(s):
Debris-covered glaciers, Microbial community, Microbial diversity, High-throughput sequencing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cuomo, Christina A (Ed.)
    Abstract Supraglacial pools are prevalent on debris-covered mountain glaciers, yet only limited information is available on the microbial communities within these habitats. Our research questions for this preliminary study were: (1) What microbes occur in supraglacial pool sediments of monsoonal Tibet?; (2) Which abiotic and biotic habitat variables have the most influence on the microbial community structure?; and (3) Does microbial composition of supraglacial pool sediments differ from that of glacial-melt stream pool sediments? We collected microbial samples for 16S rRNA sequencing and invertebrates for enumeration and identification and measured 14 abiotic variables from 46 supraglacial pools and nine glacial-melt stream pools in 2018 and 2019. Generalized linear model analyses, small sample Akaike information criterion, and variable importance scores were used to identify the best predictor variables of microbial community structure. Multi-response permutation procedure (MRPP) was used to compare taxa composition between supraglacial pools and stream pools. The most abundant phyla in supraglacial pool sediments were Proteobacteria, Actinobacteria, Bacteroidota, Chloroflexi, and Cyanobacteria. Genera richness, indicator genera richness, andPolaromonasrelative abundance were best predicted by Chironomidae larvae abundance. 
    more » « less
  2. Tamaki, Hideyuki (Ed.)
    ABSTRACT Glaciers are rapidly receding under climate change. A melting cryosphere will dramatically alter global sea levels, carbon cycling, and water resource availability. Glaciers host rich biotic communities that are dominated by microbial diversity, and this biodiversity can impact surface albedo, thereby driving a feedback loop between biodiversity and cryosphere melt. However, the microbial diversity of glacier ecosystems remains largely unknown outside of major ice sheets, particularly from a temporal perspective. Here, we characterized temporal dynamics of bacteria, eukaryotes, and algae on the Paradise Glacier, Mount Rainier, USA, over nine time points spanning the summer melt season. During our study, the glacier surface steadily darkened as seasonal snow melted and darkening agents accumulated until new snow fell in late September. From a community-wide perspective, the bacterial community remained generally constant while eukaryotes and algae exhibited temporal progression and community turnover. Patterns of individual taxonomic groups, however, were highly stochastic. We found little support for our a priori prediction that autotroph abundance would peak before heterotrophs. Notably, two different trends in snow algae emerged—an abundant early- and late-season operational taxonomic unit (OTU) with a different midsummer OTU that peaked in August. Overall, our results highlight the need for temporal sampling to clarify microbial diversity on glaciers and that caution should be exercised when interpreting results from single or few time points. IMPORTANCE Microbial diversity on mountain glaciers is an underexplored component of global biodiversity. Microbial presence and activity can also reduce the surface albedo or reflectiveness of glaciers, causing them to absorb more solar radiation and melt faster, which in turn drives more microbial activity. To date, most explorations of microbial diversity in the mountain cryosphere have only included single time points or focused on one microbial community (e.g., bacteria). Here, we performed temporal sampling over a summer melt season for the full microbial community, including bacteria, eukaryotes, and fungi, on the Paradise Glacier, Washington, USA. Over the summer, the bacterial community remained generally constant, whereas eukaryote and algal communities temporally changed through the melt season. Individual taxonomic groups, however, exhibited considerable stochasticity. Overall, our results highlight the need for temporal sampling on glaciers and that caution should be exercised when interpreting results from single or few time points. 
    more » « less
  3. Microbial community dynamics are dependent on interactions between the community members, yet studies of interactions across domains and with multiple experimental approaches are lacking. In this study, we explored interactions between bacteria and fungi associated with decaying fungal necromass using both field-based co-occurrence networks and laboratory-based pairwise interactions. The majority of field-derived bacterial-fungal correlations were negative, suggesting a potentially competitive environment within necromass compared to other systems. Laboratory experiments consisted of bacteria most often reducing fungal growth, while the fungal effect on bacterial growth was more varied and dependent on bacterial taxa. However, these interactions were not consistently predicted by field correlations, highlighting a disconnect between field-based and direct experimental approaches. Our findings suggest that using co-occurrence networks alone to predict BFI outcomes could be misleading, emphasizing the need for more comprehensive, multi-method studies to capture the dynamic and context-dependent nature of microbial interactions. 
    more » « less
  4. ABSTRACT Fire is a common ecological disturbance that structures terrestrial ecosystems and biological communities. The ability of fires to contribute to ecosystem heterogeneity has been termed pyrodiversity and has been directly linked to biodiversity (i.e., the pyrodiversity–biodiversity hypothesis). Since climate change models predict increases in fire frequency, understanding how fire pyrodiversity influences soil microbes is important for predicting how ecosystems will respond to fire regime changes. Here we tested how fire frequency‐driven changes in burn patterns (i.e., pyrodiversity) influenced soil microbial communities and diversity. We assessed pyrodiversity effects on soil microbes by manipulating fire frequency (annual vs. biennial fires) in a tallgrass prairie restoration and evaluating how changes in burn patterns influenced microbial communities (bacteria and fungi). Annual burns produced more heterogeneous burn patterns (higher pyrodiversity) that were linked to shifts in fungal and bacterial community composition. While fire frequency did not influence microbial (bacteria and fungi) alpha diversity, beta diversity did increase with pyrodiversity. Changes in fungal community composition were not linked to burn patterns, suggesting that pyrodiversity effects on other ecosystem components (e.g., plants and soil characteristics) influenced fungal community dynamics and the greater beta diversity observed in the annually burned plots. Shifts in bacterial community composition were linked to variation in higher severity burn pattern components (grey and white ash), suggesting that thermotolerance contributed to the observed changes in bacterial community composition and lower beta diversity in the biennially burned plots. This demonstrates that fire frequency‐driven increases in pyrodiversity augment biodiversity and may influence productivity in fire‐prone ecosystems. 
    more » « less
  5. Abstract Controlled greenhouse studies have shown the numerous ways that soil microbes can impact plant growth and development. However, natural soil communities are highly complex, and plants interact with many bacterial and fungal taxa simultaneously. Due to logistical challenges associated with manipulating more complex microbiome communities, how microbial communities impact emergent patterns of plant growth therefore remains poorly understood. For instance, do the interactions between bacteria and fungi generally yield additive (i.e. sum of their parts) or nonadditive, higher order plant growth responses? Without this information, our ability to accurately predict plant responses to microbial inoculants is weakened. To address these issues, we conducted a meta-analysis to determine the type (additive or higher-order, nonadditive interactions), frequency, direction (positive or negative), and strength that bacteria and mycorrhizal fungi (arbuscular and ectomycorrhizal) have on six phenotypic plant growth responses. Our results demonstrate that co-inoculations of bacteria and mycorrhizal fungi tend to have positive additive effects on many commonly reported plant responses. However, ectomycorrhizal plant shoot height responds positively and nonadditively to co-inoculations of bacteria and ectomycorrhizal fungi, and the strength of additive effects also differs between mycorrhizae type. These findings suggest that inferences from greenhouse studies likely scale to more complex field settings and that inoculating plants with diverse, beneficial microbes is a sound strategy to support plant growth. 
    more » « less