skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elucidating Phase Transformation and Surface Amorphization of Li 7 La 3 Zr 2 O 12 by In Situ Heating TEM
Abstract Garnet‐type Li7La3Zr2O12(LLZO) solid‐state electrolytes hold great promise for the next‐generation all‐solid‐state batteries. An in‐depth understanding of the phase transformation during synthetic processes is required for better control of the crystallinity and improvement of the ionic conductivity of LLZO. Herein, the phase transformation pathways and the associated surface amorphization are comparatively investigated during the sol–gel and solid‐state syntheses of LLZO using in situ heating transmission electron microscopy (TEM). The combined ex situ X‐ray diffraction and in situ TEM techniques are used to reveal two distinct phase transformation pathways (precursors → La2Zr2O7 → LLZO and precursors → LLZO) and the subsequent layer‐by‐layer crystal growth of LLZO on the atomic scale. It is also demonstrated that the surface amorphization surrounding the LLZO crystals is sensitive to the postsynthesis cooling rate and significantly affects the ionic conductivity of pelletized LLZO. This work brings up a critical but often overlooked issue that may greatly exacerbate the Li‐ion conductivity by undesired synthetic conditions, which can be leveraged to ameliorate the overall crystallinity to improve the electrochemical performance of LLZO. These findings also shed light on the significance of optimizing surface structure to ensure superior performance of Li‐ion conductors.  more » « less
Award ID(s):
2239598
PAR ID:
10483416
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley-VCH GmbH
Date Published:
Journal Name:
Small
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Garnet-type cubic Li7La3Zr2O12(c-LLZO) is a single-ion conductor, but the electrochemically generated charged vacancies make it a binary ionic electrolyte, which explains the current- and thickness-dependent lithium dendrite initiation dynamics. 
    more » « less
  2. Abstract Although multiple oxide-based solid electrolyte materials with intrinsically high ionic conductivities have emerged, practical processing and synthesis routes introduce grain boundaries and other interfaces that can perturb primary conduction channels. To directly probe these effects, we demonstrate an efficient and general mesoscopic computational method capable of predicting effective ionic conductivity through a complex polycrystalline oxide-based solid electrolyte microstructure without relying on simplified equivalent circuit description. We parameterize the framework for Li 7- x La 3 Zr 2 O 12 (LLZO) garnet solid electrolyte by combining synthetic microstructures from phase-field simulations with diffusivities from molecular dynamics simulations of ordered and disordered systems. Systematically designed simulations reveal an interdependence between atomistic and mesoscopic microstructural impacts on the effective ionic conductivity of polycrystalline LLZO, quantified by newly defined metrics that characterize the complex ionic transport mechanism. Our results provide fundamental understanding of the physical origins of the reported variability in ionic conductivities based on an extensive analysis of literature data, while simultaneously outlining practical design guidance for achieving desired ionic transport properties based on conditions for which sensitivity to microstructural features is highest. Additional implications of our results are discussed, including a possible connection between ion conduction behavior and dendrite formation. 
    more » « less
  3. Abstract All‐solid‐state batteries have the potential for enhanced safety and capacity over conventional lithium ion batteries, and are anticipated to dominate the energy storage industry. As such, strategies to enable recycling of the individual components are crucial to minimize waste and prevent health and environmental harm. Here, we use cold sintering to reprocess solid‐state composite electrolytes, specifically Mg and Sr doped Li7La3Zr2O12with polypropylene carbonate (PPC) and lithium perchlorate (LLZO−PPC−LiClO4). The low sintering temperature allows co‐sintering of ceramics, polymers and lithium salts, leading to re‐densification of the composite structures with reprocessing. Reprocessed LLZO−PPC−LiClO4exhibits densified microstructures with ionic conductivities exceeding 10−4 S/cm at room temperature after 5 recycling cycles. All‐solid‐state lithium batteries fabricated with reprocessed electrolytes exhibit a high discharge capacity of 168 mA h g−1at 0.1 C, and retention of performance at 0.2 C for over 100 cycles. Life cycle assessment (LCA) suggests that recycled electrolytes outperforms the pristine electrolyte process in all environmental impact categories, highlighting cold sintering as a promising technology for recycling electrolytes. 
    more » « less
  4. null (Ed.)
    Lithium conducting garnets are attractive solid electrolytes for solid-state lithium batteries but are difficult to process, generally requiring high reaction and sintering temperatures with long durations. In this work, we demonstrate a synthetic route to obtain Ta-doped garnet (Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 ) utilizing La- and Ta-doped lanthanum zirconate (La 2.4 Zr 1.12 Ta 0.48 O 7.04 ) pyrochlore nanocrystals as quasi-single-source precursors. Via molten salt synthesis (MSS) in a highly basic flux, the pyrochlore nanocrystals transform to Li-garnet at reaction temperatures as low as 400 °C. We also show that the pyrochlore-to-garnet conversion can take place in one step using reactive sintering, resulting in densified garnet ceramics with high ionic conductivity (0.53 mS cm −1 at 21 °C) and relative density (up to 94.7%). This approach opens new avenues for lower temperature synthesis of lithium garnets using a quasi-single-source precursor and provides an alternative route to highly dense garnet solid electrolytes without requiring advanced sintering processes. 
    more » « less
  5. Amorphous Li 3 PS 4 (LPS) solid-state electrolytes are promising for energy-dense lithium metal batteries. LPS glass, synthesized from a 3 : 1 mol ratio of Li 2 S and P 2 S 5 , has high ionic conductivity and can be synthesized by ball milling or solution processing. Ball milling has been attractive because it provides the easiest route to access amorphous LPS with a conductivity of 3.5 × 10 −4 S cm −1 (20 °C). However, achieving the complete reaction of precursors via ball milling can be difficult, and most literature reports use X-ray diffraction (XRD) or Raman spectroscopy to confirm sample purity, both of which have limitations. Furthermore, the effect of residual precursors on ionic conductivity and lithium metal cycling is unknown. In this work, we illustrate the importance of multimodal characterization to determine LPS phase and chemical purity. To determine the residual Li 2 S content in LPS, we show that (1) XRD and 31 P solid state nuclear magnetic resonance (ssNMR) are insufficient and (2) Raman loses sensitivity at concentrations below 12 mol% Li 2 S. Most importantly, we show that 7 Li ssNMR is highly sensitive. Using 7 Li ssNMR, we investigate the effect of ball milling parameters and develop a robust and highly reproducible procedure for pure LPS synthesis. We find that as the residual Li 2 S precursor content increases, LPS conductivity decreases and lithium metal batteries exhibit higher overpotentials and poor cycle life. Our work reveals the importance of multimodal characterization techniques for amorphous solid-state electrolyte characterization and will enable better synthetic strategies for highly conductive electrolytes for efficient energy-dense solid-state lithium metal batteries. 
    more » « less