skip to main content


Search for: All records

Award ID contains: 1845009

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Correlated quantum many-body phenomena in lattice models have been identified as a set of physically interesting problems that cannot be solved classically. Analog quantum simulators, in photonics and microwave superconducting circuits, have emerged as near-term platforms to address these problems. An important ingredient in practical quantum simulation experiments is the tomography of the implemented Hamiltonians—while this can easily be performed if we have individual measurement access to each qubit in the simulator, this could be challenging to implement in many hardware platforms. In this paper, we present a scheme for tomography of quantum simulators which can be described by a Bose-Hubbard Hamiltonian while having measurement access to only some sites on the boundary of the lattice. We present an algorithm that uses the experimentally routine transmission and two-photon correlation functions, measured at the boundary, to extract the Hamiltonian parameters at the standard quantum limit. Furthermore, by building on quantum enhanced spectroscopy protocols that, we show that with the additional ability to switch on and off the on-site repulsion in the simulator, we can sense the Hamiltonian parameters beyond the standard quantum limit.

    <supplementary-material><permissions><copyright-statement>Published by the American Physical Society</copyright-statement><copyright-year>2024</copyright-year></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available July 1, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10483460-dynamics-self-hybridized-excitonpolaritons-halide-perovskites" itemprop="url"> <span class='span-link' itemprop="name">Dynamics of self-hybridized exciton–polaritons in 2D halide perovskites</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1038/s41377-023-01334-9" target="_blank" title="Link to document DOI">https://doi.org/10.1038/s41377-023-01334-9  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Anantharaman, Surendra B.</span> <span class="sep">; </span><span class="author" itemprop="author">Lynch, Jason</span> <span class="sep">; </span><span class="author" itemprop="author">Stevens, Christopher E.</span> <span class="sep">; </span><span class="author" itemprop="author">Munley, Christopher</span> <span class="sep">; </span><span class="author" itemprop="author">Li, Chentao</span> <span class="sep">; </span><span class="author" itemprop="author">Hou, Jin</span> <span class="sep">; </span><span class="author" itemprop="author">Zhang, Hao</span> <span class="sep">; </span><span class="author" itemprop="author">Torma, Andrew</span> <span class="sep">; </span><span class="author" itemprop="author">Darlington, Thomas</span> <span class="sep">; </span><span class="author" itemprop="author">Coen, Francis</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2024-01-01">January 2024</time> , Light: Science & Applications) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <title>Abstract

    Excitons, bound electron–hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E–Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E–Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E–Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E–P modes. These E–Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E–Ps to lower energy E–Ps. Finally, we also demonstrate that E–Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E–Ps opening new opportunities towards their manipulation for polaritonic devices.

     
    more » « less
  2. The wave nature of light sets a fundamental diffraction limit that challenges confinement and control of light in nanoscale structures with dimensions significantly smaller than the wavelength. Here, we study light–matter interaction in van der Waals MoS2nanophotonic devices. We show that light can be coupled and guided in structures with dimensions as small as ≃λ/16 (∼60nm at 1000 nm excitation wavelength), while offering unprecedented optical field confinement. This deep subwavelength optical field confinement is achieved by exploiting strong lightwave dispersion in MoS2. We further study the performance of a range of nanophotonic integrated devices via far- and near-field measurements. Our near-field measurements reveal detailed imaging of excitation, evolution, and guidance of fields in nanostructured MoS2, whereas our far-field study examines light excitation and coupling to highly confined integrated photonics. Nanophotonics at a fraction of a wavelength demonstrated here could dramatically reduce the size of integrated photonic devices and opto-electronic circuits with potential applications in optical information science and engineering.

     
    more » « less
  3. Establishing a coherent interaction between a material resonance and an optical cavity is a necessary first step to study semiconductor quantum optics. Here we report on the signature of a coherent interaction between a two-dimensional excitonic transition in monolayer MoSe2and a zero-dimensional, ultra-low mode volume (Vm ∼ 2(λ/n)3) on-chip photonic crystal nanocavity. This coherent interaction manifests as a dispersive shift of the cavity transmission spectrum, when the exciton-cavity detuning is decreased via temperature tuning. The exciton-cavity coupling is estimated to be ≈6.5 meV, with a cooperativity of ≈4.0 at 80 K, showing our material system is on the verge of strong coupling. The small mode-volume of the resonator is instrumental in reaching the strongly nonlinear regime, while on-chip cavities will help create a scalable quantum photonic platform.

     
    more » « less
  4. Prototyping of van der Waals materials on dense nanophotonic devices requires high-precision monolayer discrimination to avoid bulk material contamination. We use the glass transition temperature of polycarbonate, used in the standard dry transfer process, to draw an in situ point for the precise pickup of two-dimensional materials. We transfer transition metal dichalcogenide monolayers onto a large-area silicon nitride spiral waveguide and silicon nitride ring resonators to demonstrate the high-precision contamination-free nature of the modified dry transfer method. Our improved local transfer technique is a necessary step for the deterministic integration of high-quality van der Waals materials onto nanocavities for the exploration of few-photon nonlinear optics on a high-throughput, nanofabrication-compatible platform.

     
    more » « less