skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design of novel cyanovirin-N variants by modulation of binding dynamics through distal mutations
We develop integrated co-evolution and dynamic coupling (ICDC) approach to identify, mutate, and assess distal sites to modulate function. We validate the approach first by analyzing the existing mutational fitness data of TEM-1 β-lactamase and show that allosteric positions co-evolved and dynamically coupled with the active site significantly modulate function. We further apply ICDC approach to identify positions and their mutations that can modulate binding affinity in a lectin, cyanovirin-N (CV-N), that selectively binds to dimannose, and predict binding energies of its variants through Adaptive BP-Dock. Computational and experimental analyses reveal that binding enhancing mutants identified by ICDC impact the dynamics of the binding pocket, and show that rigidification of the binding residues compensates for the entropic cost of binding. This work suggests a mechanism by which distal mutations modulate function through dynamic allostery and provides a blueprint to identify candidates for mutagenesis in order to optimize protein function.  more » « less
Award ID(s):
1901709
PAR ID:
10483561
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Many antibacterial and antiparasitic drugs work by competitively inhibiting dihydrofolate reductase (DHFR), a vital enzyme in folate metabolism. The interactions between inhibitors and DHFR active site residues are known in many homologs but the contributions from distal residues are less understood. Identifying distal residues that aid in inhibitor binding can improve targeted drug development programs by accounting for distant influences that may be less conserved and subject to frequent resistance causing mutations. Previously, a novel, homologybased, computational approach that mines ligand inhibition data was used to predict residues involved in inhibitor selectivity in the DHFR family. Expectedly, some inhibitor selectivity determining residue positions were predicted to lie in the active site and coincide with experimentally known inhibitor selectivity determining positions. However, other residues that group spatially in clusters distal to the active site have not been previously investigated. In this study, the effect of introducing amino acid substitutions at one of these predicted clusters (His38-Ala39-Ile40) on the inhibitor selectivity profile in Bacillus stearothermophilus dihydrofolate reductase (Bs DHFR) was investigated. Mutations were introduced into these cluster positions to change sidechain chemistry and size. We determined kcat and KM values and measured KD values at equilibrium for two competitive DHFR inhibitors, trimethoprim (TMP) and pyrimethamine (PYR). Mutations in the His38-Ala39-Ile40 cluster significantly impacted inhibitor binding and TMP/PYR selectivity - seven out of nine mutations resulted in tighter binding to PYR when compared to TMP. These data suggest that the His38-Ala39-Ile40 cluster is a distal inhibitor selectivity determining region that favors PYR binding in Bs DHFR and, possibly, throughout the DHFR family. 
    more » « less
  2. Abstract We investigated the relationship between mutations and dynamics inEscherichia colidihydrofolate reductase (DHFR) using computational methods. Our study focused on the M20 and FG loops, which are known to be functionally important and affected by mutations distal to the loops. We used molecular dynamics simulations and developed position‐specific metrics, including the dynamic flexibility index (DFI) and dynamic coupling index (DCI), to analyze the dynamics of wild‐type DHFR and compared our results with existing deep mutational scanning data. Our analysis showed a statistically significant association between DFI and mutational tolerance of the DHFR positions, indicating that DFI can predict functionally beneficial or detrimental substitutions. We also applied an asymmetric version of our DCI metric (DCIasym) to DHFR and found that certain distal residues control the dynamics of the M20 and FG loops, whereas others are controlled by them. Residues that are suggested to control the M20 and FG loops by our DCIasymmetric are evolutionarily nonconserved; mutations at these sites can enhance enzyme activity. On the other hand, residues controlled by the loops are mostly deleterious to function when mutated and are also evolutionary conserved. Our results suggest that dynamics‐based metrics can identify residues that explain the relationship between mutation and protein function or can be targeted to rationally engineer enzymes with enhanced activity. 
    more » « less
  3. Abstract Proteins gain optimal fitness such as foldability and function through evolutionary selection. However, classical studies have found that evolutionarily designed protein sequences alone cannot guarantee foldability, or at least not without considering local contacts associated with the initial folding steps. We previously showed that foldability and function can be restored by removing frustration in the folding energy landscape of a model WW domain protein, CC16, which was designed based on Statistical Coupling Analysis (SCA). Substitutions ensuring the formation of five local contacts identified as “on‐path” were selected using the closest homolog native folded sequence, N21. Surprisingly, the resulting sequence, CC16‐N21, bound to Group I peptides, while N21 did not. Here, we identified single‐point mutations that enable N21 to bind a Group I peptide ligand through structure and dynamic‐based computational design. Comparison of the docked position of the CC16‐N21/ligand complex with the N21 structure showed that residues at positions 9 and 19 are important for peptide binding, whereas the dynamic profiles identified position 10 as allosterically coupled to the binding site and exhibiting different dynamics between N21 and CC16‐N21. We found that swapping these positions in N21 with matched residues from CC16‐N21 recovers nature‐like binding affinity to N21. This study validates the use of dynamic profiles as guiding principles for affecting the binding affinity of small proteins. 
    more » « less
  4. Advances in sequencing techniques and statistical methods have made it possible not only to predict sequences of ancestral proteins but also to identify thousands of mutations in the human exome, some of which are disease associated. These developments have motivated numerous theories and raised many questions regarding the fundamental principles behind protein evolution, which have been traditionally investigated horizontally using the tip of the phylogenetic tree through comparative studies of extant proteins within a family. In this article, we review a vertical comparison of the modern and resurrected ancestral proteins. We focus mainly on the dynamical properties responsible for a protein's ability to adapt new functions in response to environmental changes. Using the Dynamic Flexibility Index and the Dynamic Coupling Index to quantify the relative flexibility and dynamic coupling at a site-specific, single-amino-acid level, we provide evidence that the migration of hinges, which are often functionally critical rigid sites, is a mechanism through which proteins can rapidly evolve. Additionally, we show that disease-associated mutations in proteins often result in flexibility changes even at positions distal from mutational sites, particularly in the modulation of active site dynamics. 
    more » « less
  5. Wallqvist, Anders (Ed.)
    Many pathogenic missense mutations are found in protein positions that are neither well-conserved nor fall in any known functional domains. Consequently, we lack any mechanistic underpinning of dysfunction caused by such mutations. We explored the disruption of allosteric dynamic coupling between these positions and the known functional sites as a possible mechanism for pathogenesis. In this study, we present an analysis of 591 pathogenic missense variants in 144 human enzymes that suggests that allosteric dynamic coupling of mutated positions with known active sites is a plausible biophysical mechanism and evidence of their functional importance. We illustrate this mechanism in a case study of β-Glucocerebrosidase (GCase) in which a vast majority of 94 sites harboring Gaucher disease-associated missense variants are located some distance away from the active site. An analysis of the conformational dynamics of GCase suggests that mutations on these distal sites cause changes in the flexibility of active site residues despite their distance, indicating a dynamic communication network throughout the protein. The disruption of the long-distance dynamic coupling caused by missense mutations may provide a plausible general mechanistic explanation for biological dysfunction and disease. 
    more » « less