skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CHARACTERIZING TRANSPORT IN HADROSAUROID DINOSAURS: AN ACTUALISTIC EXPERIMENTAL APPROACH TO FLUVIAL TAPHONOMY
Taphonomic processes create bias in the fossil record, and understanding these processes is integral to interpreting the record of extinct life worldwide. Bones preserved in fluvial environments make up a substantial part of the vertebrate fossil record. These bones have often been transported varying distances from the location of death before becoming buried. Experiments in flumes and natural settings have explored the fluvial taphonomy of mammal skeletons, but the taphonomy of other terrestrial vertebrates, especially extinct clades, has only been sparingly studied directly. Hadrosauroids are a dinosaur clade known from extensive remain throughout the Cretaceous and across the globe, making them an ideal group for taphonomic study. Previous examinations regarding the fluvial taphonomy of their skeletons have often applied bone transport groups derived from classic studies on mammals. Some researchers have raised concerns that the morphologies of non-mammalian bones would not exhibit the same hydraulic properties as mammals, producing different transport patterns. Here, we investigate hadrosauroid bone transport under various flow conditions through actualistic flume experiments using 3d printed models with comparable densities to real bone. We aimed to characterize the timing of transport of different elements (Voorhies Groups), orientation of bones relative to flow direction, and bone surface abrasion patterns. Some elements behave similarly to those described in mammals. As would be expected from previous work, relatively heavy bones such as the femur tend to move last, acting as lag elements. Lighter elements such as the scapula and radius tended to begin moving at much lower flow speeds. Because dinosaur pelvic bones are not fused as in mammals, we observed that the isolated pubis is often among the first elements to commence movement, often rotating or sliding along the bed. Cylindrical limb bones tend to roll or slide along the bed, orienting to be parallel to flow faster or slower depending on element size and flow velocity. Bones with more complex shapes, such as the curved and concave blade of the scapula, moved in less straightforward and unique ways, even vaulting over other bones. We also found that burial by fine silt and mud could be achieved relatively quickly even at slower flow speeds, and burial by sand played an important part in inhibiting transport in higher flow regimes.  more » « less
Award ID(s):
1925884
PAR ID:
10483581
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Society of Vertebrate Paleontology
Date Published:
Journal Name:
Journal of Vertebrate Paleontology, Program and Abstracts, 2023, P117
Format(s):
Medium: X
Location:
Cincinnati, OH
Sponsoring Org:
National Science Foundation
More Like this
  1. A new fossil site in a previously unexplored part of western Madagascar (the Beanka Protected Area) has yielded remains of many recently extinct vertebrates, including giant lemurs (Babakotia radofilai, Palaeopropithecus kelyus, Pachylemur sp., and Archaeolemur edwardsi), carnivores (Cryptoprocta spelea), the aardvark-like Plesiorycteropus sp., and giant ground cuckoos (Coua). Many of these represent considerable range extensions. Extant species that were extirpated from the region (e.g., Prolemur simus) are also present. Calibrated radiocarbon ages for 10 bones from extinct primates span the last three millennia. The largely undisturbed taphonomy of bone deposits supports the interpretation that many specimens fell in from a rock ledge above the entrance. Some primates and other mammals may have been prey items of avian predators, but human predation is also evident. Strontium isotope ratios (87Sr/86Sr) suggest that fossils were local to the area. Pottery sherds and bones of extinct and extant vertebrates with cut and chop marks indicate human activity in previous centuries. Scarcity of charcoal and human artifacts suggests only occasional visitation to the site by humans. The fossil assemblage from this site is unusual in that, while it contains many sloth lemurs, it lacks ratites, hippopotami, and crocodiles typical of nearly all other Holocene subfossil sites on Madagascar. 
    more » « less
  2. Abstract Increasingly researchers have employed confocal microscopy and 3D surface texture analysis to assess bone surface modifications in an effort to understand ancient behavior. However, quantitative comparisons between the surfaces of purported archaeological bone tools and experimentally manufactured and used bones are complicated by taphonomic processes affecting ancient bone. Nonetheless, it may be reasonable to assume that bones within the same deposits are altered similarly and thus these alterations are quantifiable. Here we show how unworked bones can be used to quantify the taphonomic effect on bone surfaces and how this effect can then be controlled for and incorporated into an analysis for evaluating the modified surfaces of purported bone tools. To assess the baseline taphonomy of Middle Paleolithic archaeological deposits associated with typologically identified bone artifacts, specifically lissoirs , we directly compare the surface textures of ancient and modern unworked ribs. We then compare the ancient unworked ribs and lissoirs to assess their differences and predict the ancient artifacts’ original surface state using a multilevel multivariate Bayesian model. Our findings demonstrate that three of five tested surface texture parameters ( Sa , Spc , and IsT ) are useful for distinguishing surface type. Our model predictions show that lissoirs tend to be less rough, have more rounded surface peaks, and exhibit more directionally oriented surfaces. These characteristics are likely due to anthropogenic modifications and would have been more pronounced at deposition. Quantifying taphonomic alterations moves us one step closer to accurately assessing how bone artifacts were made and used in the ancient past. 
    more » « less
  3. null (Ed.)
    The Barstow Formation in the Mojave region of California was deposited in an extensional-basin setting of the Basin and Range province and preserves diverse middle Miocene mammalian assemblages. Six facies associations represent the dominant depositional environments in the basin, which changed through time from alluvial-fan and playa-dominated settings to floodplains and spring-fed wetlands. The majority of fossil localities and specimens occur in later-forming facies associations. We analyzed the taphonomic characteristics of fossil assemblages to test whether basin-scale facies associations or locality-scale facies exert more control on the preservational features of mammalian assemblages through the formation. We documented the facies settings of 47 vertebrate localities in the field in order to interpret depositional setting and the mode of accumulation for fossil assemblages. We evaluated skeletal material in museum collections for taphonomic indicators, including weathering stage, original bone-damage patterns, hydraulic equivalence, and skeletal-element composition. We evaluated four alternative modes of accumulation, including attritional accumulation on the land surface, accumulation by fluvial processes, carnivore or scavenger accumulations, and mass-death events. The majority of localities represent attritional accumulations at sites of long-term mortality in channel-margin, abandoned-channel, poorly drained floodplain, and ephemeral-wetland settings. Skeletal-element composition and taphonomic characteristics varied among facies, indicating an important role for depositional setting and landscape position on fossil-assemblage preservation. We find that locality-scale facies have a greater influence on the taphonomic characteristics of fossil assemblages; the taphonomy of each facies association is influenced by the facies that compose it. The facies composition and distribution within facies associations change through the formation, with a greater variety of depositional settings forming later in the history of the basin. Heterogeneous landscapes present more settings for fossil accumulation, contributing to the increase in fossil occurrence through the depositional history of the formation. 
    more » « less
  4. Abstract The rise of eukaryotic macroalgae in the late Mesoproterozoic to early Neoproterozoic was a critical development in Earth’s history that triggered dramatic changes in biogeochemical cycles and benthic habitats, ultimately resulting in ecosystems habitable to animals. However, evidence of the diversification and expansion of macroalgae is limited by a biased fossil record. Non-mineralizing organisms are rarely preserved, occurring only in exceptional environments that favor fossilization. Investigating the taphonomy of well-preserved macroalgae will aid in identifying these target environments, allowing ecological trends to be disentangled from taphonomic overprints. Here we describe the taphonomy of macroalgal fossils from the Tonian Dolores Creek Formation (ca. 950 Ma) of northwestern Canada (Yukon Territory) that preserves cm-scale macroalgae. Analytical microscopy, including scanning electron microscopy and tomographic x-ray microscopy, was used to investigate fossil preservation, which was the result of a combination of pyritization and aluminosilicification, similar to accessory mineralization observed in Paleozoic Burgess Shale-type fossils. These new Neoproterozoic fossils help to bridge a gap in the fossil record of early algae, offer a link between the fossil and molecular record, and provide new insights into evolution during the Tonian Period, when many eukaryotic lineages are predicted to have diversified. 
    more » « less
  5. Davoult, D (Ed.)
    Abstract: Several levels of the Lorraine Group (Upper Ordovician) in upstate New York (USA) have yielded low-diversity, exceptionally preserved, pyritized invertebrate assemblages dominated by the trilobite Triarthrus eatoni. Sedimentological and taphonomic features suggest dysoxic bottom-water conditions, with limited transport and rapid burial by distal turbidites. Echinoderms are extremely rare in these strata. Here we report, for the first time, the occurrence of the anomalocystitid mitrate Enoploura popei in the Konservat-Lagerstätte of Beecher's Trilobite Bed. A pyritized specimen of this stylophoran was CT-scanned and three-dimensionally reconstructed. The mitrate is laterally compressed, but its 3D-rendering provided several insights into its internal anatomy and taphonomy. The recurved position of the single feeding appendage (aulacophore) is consistent with ligament-induced, post mortem contraction. This posture and the collapse of one lateral series of cover plates indicate that the individual was probably not buried alive. Nevertheless, a portion of the distal aulacophore shows clear evidence of exceptionally preserved soft parts (ambulacral system) in between two sets of slightly open cover plates and the underlying ossicles. One of the most intriguing features of this specimen is its close association with a sinuous, elongated, pyritized trace fossil, which enters the stylophoran through the mouth and disappears into the proximal aulacophore. In marked contrast with other skeletal parts of the specimen (theca and distal part of the aulacophore), the proximal rings of the aulacophore are heavily disrupted and disarticulated. Proximal rings are usually decay-resistant skeletal regions in stylophorans. Therefore, close association of this disrupted region with a trace fossil penetrating it suggests the action of an unknown infaunal scavenger. Location of this trace suggests targeting during early decay of the large muscular proximal aulacophore. 
    more » « less