Transformers trained on huge text corpora exhibit a remarkable set of capabilities, e.g., performing simple logical operations. Given the inherent compositional nature of language, one can expect the model to learn to compose these capabilities, potentially yielding a combinatorial explosion of what operations it can perform on an input. Motivated by the above, we aim to assess in this paper “how capable can a transformer become?”. Specifically, we train autoregressive Transformer models on a data-generating process that involves compositions of a set of well-defined monolithic capabilities. Through a series of extensive and systematic experiments on this data-generating process, we show that: (1) Autoregressive Transformers can learn compositional structures from the training data and generalize to exponentially or even combinatorially many functions; (2) composing functions by generating intermediate outputs is more effective at generalizing to unseen compositions, compared to generating no intermediate outputs; (3) the training data has a significant impact on the model’s ability to compose unseen combinations of functions; and (4) the attention layers in the latter half of the model are critical to compositionality
more »
« less
Compositional Abilities Emerge Multiplicatively: Exploring Diffusion Models on a Synthetic Task
Modern generative models exhibit unprecedented capabilities to generate extremely realistic data. However, given the inherent compositionality of real world, reliable use of these models in practical applications mandates they exhibit the ability to compose their capabilities, generating and reasoning over entirely novel samples never seen in the training distribution. Prior work demonstrates recent vision diffusion models exhibit intriguing compositional generalization abilities, but also fail rather unpredictably. What are the reasons underlying this behavior? Which concepts does the model generally find difficult to compose to form novel data? To address these questions, we perform a controlled study of compositional generalization in conditional diffusion models in a synthetic setting, varying different attributes of the training data and measuring the model's ability to generate samples out-of-distribution. Our results show that: (i) the compositional structure of the data-generating process governs the order in which capabilities and an ability to compose them emerges; (ii) learning individual concepts impacts performance on compositional tasks, multiplicatively explaining sudden emergence; and (iii) learning and composing capabilities is difficult under correlations. We hope our study inspires further grounded research on understanding capabilities and compositionality in generative models from a data-centric perspective.
more »
« less
- Award ID(s):
- 2008151
- PAR ID:
- 10483596
- Publisher / Repository:
- Proc. Conf. on Neural Information Processing Systems
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Transformers trained on huge text corpora exhibit a remarkable set of capabilities. Given the inherent compositional nature of language, one can expect the model to learn to compose these capabilities, potentially yielding a combinatorial explosion of what operations it can perform on an input. Motivated by the above, we aim to assess in this paper “how capable can a transformer become?”. In this work, we train Transformer models on a data-generating process that involves compositions of a set of well-defined monolithic capabilities and show that: (1) Transformers generalize to exponentially or even combinatorially many functions not seen in the training data; (2) composing functions by generating intermediate outputs is more effective at generalizing to unseen compositions; (3) the training data has a significant impact on the model’s ability to compose functions (4) Attention layers in the latter half of the model seem critical to compositionality.more » « less
-
The recent wave of large-scale text-to-image diffusion models has dramatically increased our text-based image generation abilities. These models can generate realistic images for a staggering variety of prompts and exhibit impressive compositional generalization abilities. Almost all use cases thus far have solely focused on sampling; however, diffusion models can also provide conditional density estimates, which are useful for tasks beyond image generation. In this paper, we show that the density estimates from large-scale text-to-image diffusion models like Stable Diffusion can be leveraged to perform zero-shot classification without any additional training. Our generative approach to classification, which we call Diffusion Classifier, attains strong results on a variety of benchmarks and outperforms alternative methods of extracting knowledge from diffusion models. Although a gap remains between generative and discriminative approaches on zero-shot recognition tasks, our diffusion-based approach has significantly stronger multimodal compositional reasoning ability than competing discriminative approaches. Finally, we use Diffusion Classifier to extract standard classifiers from class-conditional diffusion models trained on ImageNet. Our models achieve strong classification performance using only weak augmentations and exhibit qualitatively better "effective robustness" to distribution shift. Overall, our results are a step toward using generative over discriminative models for downstream tasks.more » « less
-
The ability to understand visual concepts and replicate and compose these concepts from images is a central goal for computer vision. Recent advances in text-to-image (T2I) models have lead to high definition and realistic image quality generation by learning from large databases of images and their descriptions. However, the evaluation of T2I models has focused on photorealism and limited qualitative measures of visual understanding. To quantify the ability of T2I models in learning and synthesizing novel visual concepts (a.k.a. personalized T2I), we introduce ConceptBed, a large-scale dataset that consists of 284 unique visual concepts, and 33K composite text prompts. Along with the dataset, we propose an evaluation metric, Concept Confidence Deviation (CCD), that uses the confidence of oracle concept classifiers to measure the alignment between concepts generated by T2I generators and concepts contained in target images. We evaluate visual concepts that are either objects, attributes, or styles, and also evaluate four dimensions of compositionality: counting, attributes, relations, and actions. Our human study shows that CCD is highly correlated with human understanding of concepts. Our results point to a trade-off between learning the concepts and preserving the compositionality which existing approaches struggle to overcome. The data, code, and interactive demo is available at: https://conceptbed.github.io/more » « less
-
Non-compositional expressions, by virtue of their non-compositionality, are a classic ‘pain in the neck’ for NLP systems. Different from the general language modeling and generation tasks that are primarily compositional, generating non-compositional expressions is more challenging for current neural models, including large pre-trained language models. The main reasons are 1) their non-compositionality, and 2) the limited data resources. Therefore, to make the best use of available data for modeling non-compositionality, we propose a dynamic curriculum learning framework, which learns training examples from easy ones to harder ones thus optimizing the learning step by step but suffers from the forgetting problem. To alleviate the forgetting problem brought by the arrangement of training examples, we also apply a continual learning method into our curriculum learning framework. Our proposed method combined curriculum and continual learning, to gradually improve the model’s performance on the task of non-compositional expression generation. Experiments on idiomatic expression generation and metaphor generation affirm the effectiveness of our proposed curriculum learning framework and the application of continual learning. Our codes are available at https://github.com/zhjjn/CL2Gen.git.more » « less
An official website of the United States government

