skip to main content


This content will become publicly available on January 1, 2025

Title: Single-shot local measurement of terahertz correlated second harmonic generation in laser air plasma filaments

We present a single-shot detection method of terahertz correlated second harmonic generation in plasma-based sources by directly mixing an optical probe into femtosecond laser-induced plasma filaments in air. The single-shot second harmonic trace is obtained by measuring a second harmonic generation on a conventional CCD with a spatiotemporally distorted probe beam. The system shows a spectrometer resolution of 22 fs/pixel on the CCD and a true resolution on the order of the probe pulse duration. With considerable THz peak electric field strength, this formalism can open the door to single-shot THz detection without bandwidth limitations.

 
more » « less
NSF-PAR ID:
10483600
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
49
Issue:
2
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 226
Size(s):
["Article No. 226"]
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the observation of terahertz field-induced second harmonic (TFISH) generation produced by directly mixing an optical probe beam onto femtosecond plasma filaments. The produced TFISH signal is spatially separated from the laser-induced supercontinuum by impinging on the plasma at a noncollinear angle. The conversion efficiency of the fundamental probe beam to its second harmonic (SH) beam is greater than 0.02%, which represents a record in optical probe to TFISH conversion efficiency that is nearly five orders of magnitude larger than previous experiments. We also present the terahertz (THz) spectral buildup of the source along the plasma filament and retrieve coherent terahertz signal measurements. This method of analysis has the potential to provide local electric field strength measurements inside of the filament.

     
    more » « less
  2. In many low-temperature plasmas (LTPs), the OH radical and temperature represent key properties of plasma reactivity. However, OH and temperature measurements in weakly ionized LTPs are challenging, due to the low concentration and short lifetime of OH and the abrupt temperature rise caused by fast gas heating. To address such issues, this Letter combined cavity-enhanced absorption spectroscopy (CEAS) with femtosecond (fs) pulses to enable sensitive single-shot broadband measurements of OH and temperature with a time resolution of ∼180 ns in LTPs. Such a combination leveraged several benefits. With the appropriately designed cavity, an absorption gain of ∼66 was achieved, enhancing the actual OH detection limit by ∼55× to the 1011cm-3level (sub-ppm in this work) compared with single-pass absorption. Single-shot measurements were enabled while maintaining a time resolution of ∼180 ns, sufficiently short for detecting OH with a lifetime of ∼100 μs. With the broadband fs laser, ∼34,000 cavity modes were matched with ∼95 modes matched on each CCD pixel bandwidth, such that fs-CEAS became immune to the laser-cavity coupling noise and highly robust across the entire spectral range. Also, the broadband fs laser allowed simultaneous sensing of many absorption features to enable simultaneous multi-parameter measurements with enhanced accuracies.

     
    more » « less
  3. Abstract

    Label-free optical microscopy has matured as a noninvasive tool for biological imaging; yet, it is criticized for its lack of specificity, slow acquisition and processing times, and weak and noisy optical signals that lead to inaccuracies in quantification. We introduce FOCALS (Fast Optical Coherence, Autofluorescence Lifetime imaging, and Second harmonic generation) microscopy capable of generating NAD(P)H fluorescence lifetime, second harmonic generation (SHG), and polarization-sensitive optical coherence microscopy (OCM) images simultaneously. Multimodal imaging generates quantitative metabolic and morphological profiles of biological samples in vitro, ex vivo, and in vivo. Fast analog detection of fluorescence lifetime and real-time processing on a graphical processing unit enables longitudinal imaging of biological dynamics. We detail the effect of optical aberrations on the accuracy of FLIM beyond the context of undistorting image features. To compensate for the sample-induced aberrations, we implemented a closed-loop single-shot sensorless adaptive optics solution, which uses computational adaptive optics of OCM for wavefront estimation within 2 s and improves the quality of quantitative fluorescence imaging in thick tissues. Multimodal imaging with complementary contrasts improves the specificity and enables multidimensional quantification of the optical signatures in vitro, ex vivo, and in vivo, fast acquisition and real-time processing improve imaging speed by 4–40 × while maintaining enough signal for quantitative nonlinear microscopy, and adaptive optics improves the overall versatility, which enable FOCALS microscopy to overcome the limits of traditional label-free imaging techniques.

     
    more » « less
  4. We report a systematic investigation into the processes behind a near hundred-fold enhanced second harmonic wave generated from a laser-induced air plasma, by examining the temporal dynamics of the frequency conversion processes, and the polarization of the emitted second harmonic beam. Contrary to typical nonlinear optical processes, the enhanced second harmonic generation efficiency is only observed within a sub-picosecond time window and found to be nearly constant across fundamental pulse durations spanning from 0.1 ps to over 2 ps. We further demonstrate that with the adopted orthogonal pump–probe configuration, the polarization of the second harmonic field exhibits a complex dependence on the polarization of both input fundamental beams, contrasting with most of the previous experiments with a single-beam geometry.

     
    more » « less
  5. null (Ed.)
    Developing efficient and robust terahertz (THz) sources is of incessant interest in the THz community for their wide applications. With successive effort in past decades, numerous groups have achieved THz wave generation from solids, gases, and plasmas. However, liquid, especially liquid water has never been demonstrated as a THz source. One main reason leading the impediment is that water has strong absorption characteristics in the THz frequency regime. A thin water film under intense laser excitation was introduced as the THz source to mitigate the considerable loss of THz waves from the absorption. Laser-induced plasma formation associated with a ponderomotive force- induced dipole model was proposed to explain the generation process. For the one-color excitation scheme, the water film generates a higher THz electric field than the air does under the identical experimental condition. Unlike the case of air, THz wave generation from liquid water prefers a sub-picosecond (200 – 800 fs) laser pulse rather than a femtosecond pulse (~50 fs). This observation results from the plasma generation process in water. For the two-color excitation scheme, the THz electric field is enhanced by one-order of magnitude in comparison with the one-color case. Meanwhile, coherent control of the THz field is achieved by adjusting the relative phase between the fundamental pulse and the second-harmonic pulse. To eliminate the total internal reflection of THz waves at the water-air interface of a water film, a water line produced by a syringe needle was used to emit THz waves. As expected, more THz radiation can be coupled out and detected. THz wave generation from other liquids were also tested. 
    more » « less