Deep neural networks have provided state-of-the-art solutions for problems such as image denoising, which implicitly rely on a prior probability model of natural images. Two recent lines of work – Denoising Score Matching and Plug-and-Play – propose methodologies for drawing samples from this implicit prior and using it to solve inverse problems, respectively. Here, we develop a parsimonious and robust generalization of these ideas. We rely on a classic statistical result that shows the least-squares solution for removing additive Gaussian noise can be written directly in terms of the gradient of the log of the noisy signal density. We use this to derive a stochastic coarse-to-fine gradient ascent procedure for drawing high-probability samples from the implicit prior embedded within a CNN trained to perform blind denoising. A generalization of this algorithm to constrained sampling provides a method for using the implicit prior to solve any deterministic linear inverse problem, with no additional training, thus extending the power of supervised learning for denoising to a much broader set of problems. The algorithm relies on minimal assumptions and exhibits robust convergence over a wide range of parameter choices. To demonstrate the generality of our method, we use it to obtain state-of-the-art levels of unsupervised performance for deblurring, super-resolution, and compressive sensing.
more »
« less
Learning Provably Robust Estimators for Inverse Problems via Jittering
Deep neural networks provide excellent performance for inverse problems such as denoising. However, neural networks can be sensitive to adversarial or worst-case perturbations. This raises the question of whether such networks can be trained efficiently to be worst-case robust. In this paper, we investigate whether jittering, a simple regularization technique that adds isotropic Gaussian noise during training, is effective for learning worst-case robust estimators for inverse problems. While well studied for prediction in classification tasks, the effectiveness of jittering for inverse problems has not been systematically investigated. In this paper, we present a novel analytical characterization of the optimal -worst-case robust estimator for linear denoising and show that jittering yields optimal robust denoisers. Furthermore, we examine jittering empirically via training deep neural networks (U-nets) for natural image denoising, deconvolution, and accelerated magnetic resonance imaging (MRI). The results show that jittering significantly enhances the worst-case robustness, but can be suboptimal for inverse problems beyond denoising. Moreover, our results imply that training on real data which often contains slight noise is somewhat robustness enhancing.
more »
« less
- PAR ID:
- 10483608
- Publisher / Repository:
- Proceedings of Neural Information Processing Systems
- Date Published:
- Format(s):
- Medium: X
- Location:
- New Orleans
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Solving a bilevel optimization problem is at the core of several machine learning problems such as hyperparameter tuning, data denoising, meta- and few-shot learning, and training-data poisoning. Different from simultaneous or multi-objective optimization, the steepest descent direction for minimizing the upper-level cost in a bilevel problem requires the inverse of the Hessian of the lower-level cost. In this work, we propose a novel algorithm for solving bilevel optimization problems based on the classical penalty function approach. Our method avoids computing the Hessian inverse and can handle constrained bilevel problems easily. We prove the convergence of the method under mild conditions and show that the exact hypergradient is obtained asymptotically. Our method's simplicity and small space and time complexities enable us to effectively solve large-scale bilevel problems involving deep neural networks. We present results on data denoising, few-shot learning, and training-data poisoning problems in a large-scale setting. Our results show that our approach outperforms or is comparable to previously proposed methods based on automatic differentiation and approximate inversion in terms of accuracy, run-time, and convergence speed.more » « less
-
null (Ed.)Abstract Deep neural networks provide state-of-the-art performance for image denoising, where the goal is to recover a near noise-free image from a noisy observation. The underlying principle is that neural networks trained on large data sets have empirically been shown to be able to generate natural images well from a low-dimensional latent representation of the image. Given such a generator network, a noisy image can be denoised by (i) finding the closest image in the range of the generator or by (ii) passing it through an encoder-generator architecture (known as an autoencoder). However, there is little theory to justify this success, let alone to predict the denoising performance as a function of the network parameters. In this paper, we consider the problem of denoising an image from additive Gaussian noise using the two generator-based approaches. In both cases, we assume the image is well described by a deep neural network with ReLU activations functions, mapping a $$k$$-dimensional code to an $$n$$-dimensional image. In the case of the autoencoder, we show that the feedforward network reduces noise energy by a factor of $O(k/n)$. In the case of optimizing over the range of a generative model, we state and analyze a simple gradient algorithm that minimizes a non-convex loss function and provably reduces noise energy by a factor of $O(k/n)$. We also demonstrate in numerical experiments that this denoising performance is, indeed, achieved by generative priors learned from data.more » « less
-
Deep neural networks, in particular convolutional neural networks, have become highly effective tools for compressing images and solving inverse problems including denoising, inpainting, and reconstruction from few and noisy measurements. This success can be attributed in part to their ability to represent and generate natural images well. Contrary to classical tools such as wavelets, image-generating deep neural networks have a large number of parameters---typically a multiple of their output dimension---and need to be trained on large datasets. In this paper, we propose an untrained simple image model, called the deep decoder, which is a deep neural network that can generate natural images from very few weight parameters. The deep decoder has a simple architecture with no convolutions and fewer weight parameters than the output dimensionality. This underparameterization enables the deep decoder to compress images into a concise set of network weights, which we show is on par with wavelet-based thresholding. Further, underparameterization provides a barrier to overfitting, allowing the deep decoder to have state-of-the-art performance for denoising. The deep decoder is simple in the sense that each layer has an identical structure that consists of only one upsampling unit, pixel-wise linear combination of channels, ReLU activation, and channelwise normalization. This simplicity makes the network amenable to theoretical analysis, and it sheds light on the aspects of neural networks that enable them to form effective signal representations.more » « less
-
Deep Learning (DL), in particular deep neural networks (DNN), by default is purely data-driven and in general does not require physics. This is the strength of DL but also one of its key limitations when applied to science and engineering problems in which underlying physical properties—such as stability, conservation, and positivity—and accuracy are required. DL methods in their original forms are not capable of respecting the underlying mathematical models or achieving desired accuracy even in big-data regimes. On the other hand, many data-driven science and engineering problems, such as inverse problems, typically have limited experimental or observational data, and DL would overfit the data in this case. Leveraging information encoded in the underlying mathematical models, we argue, not only compensates missing information in low data regimes but also provides opportunities to equip DL methods with the underlying physics, and hence promoting better generalization. This paper develops a model-constrained deep learning approach and its variant TNet—a Tikhonov neural network—that are capable of learning not only information hidden in the training data but also in the underlying mathematical models to solve inverse problems governed by partial differential equations in low data regimes. We provide the constructions and some theoretical results for the proposed approaches for both linear and nonlinear inverse problems. Since TNet is designed to learn inverse solution with Tikhonov regularization, it is interpretable: in fact it recovers Tikhonov solutions for linear cases while potentially approximating Tikhonov solutions in any desired accuracy for nonlinear inverse problems. We also prove that data randomization can enhance not only the smoothness of the networks but also their generalizations. Comprehensive numerical results confirm the theoretical findings and show that with even as little as 1 training data sample for 1D deconvolution, 5 for inverse 2D heat conductivity problem, 100 for inverse initial conditions for time-dependent 2D Burgers’ equation, and 50 for inverse initial conditions for 2D Navier-Stokes equations, TNet solutions can be as accurate as Tikhonov solutions while being several orders of magnitude faster. This is possible owing to the model-constrained term, replications, and randomization.more » « less
An official website of the United States government

