skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on December 31, 2024

Title: Learning Provably Robust Estimators for Inverse Problems via Jittering
Deep neural networks provide excellent performance for inverse problems such as denoising. However, neural networks can be sensitive to adversarial or worst-case perturbations. This raises the question of whether such networks can be trained efficiently to be worst-case robust. In this paper, we investigate whether jittering, a simple regularization technique that adds isotropic Gaussian noise during training, is effective for learning worst-case robust estimators for inverse problems. While well studied for prediction in classification tasks, the effectiveness of jittering for inverse problems has not been systematically investigated. In this paper, we present a novel analytical characterization of the optimal -worst-case robust estimator for linear denoising and show that jittering yields optimal robust denoisers. Furthermore, we examine jittering empirically via training deep neural networks (U-nets) for natural image denoising, deconvolution, and accelerated magnetic resonance imaging (MRI). The results show that jittering significantly enhances the worst-case robustness, but can be suboptimal for inverse problems beyond denoising. Moreover, our results imply that training on real data which often contains slight noise is somewhat robustness enhancing.  more » « less
Award ID(s):
1813877 1846369
NSF-PAR ID:
10483608
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of Neural Information Processing Systems
Date Published:
Format(s):
Medium: X
Location:
New Orleans
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks have provided state-of-the-art solutions for problems such as image denoising, which implicitly rely on a prior probability model of natural images. Two recent lines of work – Denoising Score Matching and Plug-and-Play – propose methodologies for drawing samples from this implicit prior and using it to solve inverse problems, respectively. Here, we develop a parsimonious and robust generalization of these ideas. We rely on a classic statistical result that shows the least-squares solution for removing additive Gaussian noise can be written directly in terms of the gradient of the log of the noisy signal density. We use this to derive a stochastic coarse-to-fine gradient ascent procedure for drawing high-probability samples from the implicit prior embedded within a CNN trained to perform blind denoising. A generalization of this algorithm to constrained sampling provides a method for using the implicit prior to solve any deterministic linear inverse problem, with no additional training, thus extending the power of supervised learning for denoising to a much broader set of problems. The algorithm relies on minimal assumptions and exhibits robust convergence over a wide range of parameter choices. To demonstrate the generality of our method, we use it to obtain state-of-the-art levels of unsupervised performance for deblurring, super-resolution, and compressive sensing. 
    more » « less
  2. Learning to optimize (L2O) has recently emerged as a promising approach to solving optimization problems by exploiting the strong prediction power of neural networks and offering lower runtime complexity than conventional solvers. While L2O has been applied to various problems, a crucial yet challenging class of problems — robust combinatorial optimization in the form of minimax optimization — have largely remained under-explored. In addition to the exponentially large decision space, a key challenge for robust combinatorial optimization lies in the inner optimization problem, which is typically non-convex and entangled with outer optimization. In this paper, we study robust combinatorial optimization and propose a novel learning-based optimizer, called LRCO (Learning for Robust Combinatorial Optimization), which quickly outputs a robust solution in the presence of uncertain context. LRCO leverages a pair of learning-based optimizers — one for the minimizer and the other for the maximizer — that use their respective objective functions as losses and can be trained without the need of labels for training problem instances. To evaluate the performance of LRCO, we perform simulations for the task offloading problem in vehicular edge computing. Our results highlight that LRCO can greatly reduce the worst-case cost and improve robustness, while having a very low runtime complexity. 
    more » « less
  3. Adversarial training (AT) is a widely recognized defense mechanism to gain the robustness of deep neural networks against adversarial attacks. It is built on min-max optimization (MMO), where the minimizer (i.e., defender) seeks a robust model to minimize the worst-case training loss in the presence of adversarial examples crafted by the maximizer (i.e., attacker). However, the conventional MMO method makes AT hard to scale. Thus, FAST-AT (Wong et al., 2020) and other recent algorithms attempt to simplify MMO by replacing its maximization step with the single gradient sign-based attack generation step. Although easy to implement, FAST-AT lacks theoretical guarantees, and its empirical performance is unsatisfactory due to the issue of robust catastrophic overfitting when training with strong adversaries. In this paper, we advance FAST-AT from the fresh perspective of bi-level optimization (BLO). We first show that the commonly used FAST-AT is equivalent to using a stochastic gradient algorithm to solve a linearized BLO problem involving a sign operation. However, the discrete nature of the sign operation makes it difficult to understand the algorithm performance. Inspired by BLO, we design and analyze a new set of robust training algorithms termed Fast Bilevel AT (FAST-BAT), which effectively defends sign-based projected gradient descent (PGD) attacks without using any gradient sign method or explicit robust regularization. In practice, we show our method yields substantial robustness improvements over baselines across multiple models and datasets 
    more » « less
  4. Solving a bilevel optimization problem is at the core of several machine learning problems such as hyperparameter tuning, data denoising, meta- and few-shot learning, and training-data poisoning. Different from simultaneous or multi-objective optimization, the steepest descent direction for minimizing the upper-level cost in a bilevel problem requires the inverse of the Hessian of the lower-level cost. In this work, we propose a novel algorithm for solving bilevel optimization problems based on the classical penalty function approach. Our method avoids computing the Hessian inverse and can handle constrained bilevel problems easily. We prove the convergence of the method under mild conditions and show that the exact hypergradient is obtained asymptotically. Our method's simplicity and small space and time complexities enable us to effectively solve large-scale bilevel problems involving deep neural networks. We present results on data denoising, few-shot learning, and training-data poisoning problems in a large-scale setting. Our results show that our approach outperforms or is comparable to previously proposed methods based on automatic differentiation and approximate inversion in terms of accuracy, run-time, and convergence speed. 
    more » « less
  5. Convolutional Neural Networks (CNNs) have emerged as highly successful tools for image generation, recovery, and restoration. This success is often attributed to large amounts of training data. However, recent experimental findings challenge this view and instead suggest that a major contributing factor to this success is that convolutional networks impose strong prior assumptions about natural images. A surprising experiment that highlights this architectural bias towards natural images is that one can remove noise and corruptions from a natural image without using any training data, by simply fitting (via gradient descent) a randomly initialized, over-parameterized convolutional generator to the single corrupted image. While this over-parameterized network can fit the corrupted image perfectly, surprisingly after a few iterations of gradient descent one obtains the uncorrupted image. This intriguing phenomena enables state-of-the-art CNN-based denoising and regularization of linear inverse problems such as compressive sensing. In this paper we take a step towards demystifying this experimental phenomena by attributing this effect to particular architectural choices of convolutional networks, namely convolutions with fixed interpolating filters. We then formally characterize the dynamics of fitting a two layer convolutional generator to a noisy signal and prove that earlystopped gradient descent denoises/regularizes. This results relies on showing that convolutional generators fit the structured part of an image significantly faster than the corrupted portion 
    more » « less