skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Provably Robust Estimators for Inverse Problems via Jittering
Deep neural networks provide excellent performance for inverse problems such as denoising. However, neural networks can be sensitive to adversarial or worst-case perturbations. This raises the question of whether such networks can be trained efficiently to be worst-case robust. In this paper, we investigate whether jittering, a simple regularization technique that adds isotropic Gaussian noise during training, is effective for learning worst-case robust estimators for inverse problems. While well studied for prediction in classification tasks, the effectiveness of jittering for inverse problems has not been systematically investigated. In this paper, we present a novel analytical characterization of the optimal -worst-case robust estimator for linear denoising and show that jittering yields optimal robust denoisers. Furthermore, we examine jittering empirically via training deep neural networks (U-nets) for natural image denoising, deconvolution, and accelerated magnetic resonance imaging (MRI). The results show that jittering significantly enhances the worst-case robustness, but can be suboptimal for inverse problems beyond denoising. Moreover, our results imply that training on real data which often contains slight noise is somewhat robustness enhancing.  more » « less
Award ID(s):
1813877 1846369
PAR ID:
10483608
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of Neural Information Processing Systems
Date Published:
Format(s):
Medium: X
Location:
New Orleans
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks have provided state-of-the-art solutions for problems such as image denoising, which implicitly rely on a prior probability model of natural images. Two recent lines of work – Denoising Score Matching and Plug-and-Play – propose methodologies for drawing samples from this implicit prior and using it to solve inverse problems, respectively. Here, we develop a parsimonious and robust generalization of these ideas. We rely on a classic statistical result that shows the least-squares solution for removing additive Gaussian noise can be written directly in terms of the gradient of the log of the noisy signal density. We use this to derive a stochastic coarse-to-fine gradient ascent procedure for drawing high-probability samples from the implicit prior embedded within a CNN trained to perform blind denoising. A generalization of this algorithm to constrained sampling provides a method for using the implicit prior to solve any deterministic linear inverse problem, with no additional training, thus extending the power of supervised learning for denoising to a much broader set of problems. The algorithm relies on minimal assumptions and exhibits robust convergence over a wide range of parameter choices. To demonstrate the generality of our method, we use it to obtain state-of-the-art levels of unsupervised performance for deblurring, super-resolution, and compressive sensing. 
    more » « less
  2. Solving a bilevel optimization problem is at the core of several machine learning problems such as hyperparameter tuning, data denoising, meta- and few-shot learning, and training-data poisoning. Different from simultaneous or multi-objective optimization, the steepest descent direction for minimizing the upper-level cost in a bilevel problem requires the inverse of the Hessian of the lower-level cost. In this work, we propose a novel algorithm for solving bilevel optimization problems based on the classical penalty function approach. Our method avoids computing the Hessian inverse and can handle constrained bilevel problems easily. We prove the convergence of the method under mild conditions and show that the exact hypergradient is obtained asymptotically. Our method's simplicity and small space and time complexities enable us to effectively solve large-scale bilevel problems involving deep neural networks. We present results on data denoising, few-shot learning, and training-data poisoning problems in a large-scale setting. Our results show that our approach outperforms or is comparable to previously proposed methods based on automatic differentiation and approximate inversion in terms of accuracy, run-time, and convergence speed. 
    more » « less
  3. null (Ed.)
    Abstract Deep neural networks provide state-of-the-art performance for image denoising, where the goal is to recover a near noise-free image from a noisy observation. The underlying principle is that neural networks trained on large data sets have empirically been shown to be able to generate natural images well from a low-dimensional latent representation of the image. Given such a generator network, a noisy image can be denoised by (i) finding the closest image in the range of the generator or by (ii) passing it through an encoder-generator architecture (known as an autoencoder). However, there is little theory to justify this success, let alone to predict the denoising performance as a function of the network parameters. In this paper, we consider the problem of denoising an image from additive Gaussian noise using the two generator-based approaches. In both cases, we assume the image is well described by a deep neural network with ReLU activations functions, mapping a $$k$$-dimensional code to an $$n$$-dimensional image. In the case of the autoencoder, we show that the feedforward network reduces noise energy by a factor of $O(k/n)$. In the case of optimizing over the range of a generative model, we state and analyze a simple gradient algorithm that minimizes a non-convex loss function and provably reduces noise energy by a factor of $O(k/n)$. We also demonstrate in numerical experiments that this denoising performance is, indeed, achieved by generative priors learned from data. 
    more » « less
  4. Deep neural networks, in particular convolutional neural networks, have become highly effective tools for compressing images and solving inverse problems including denoising, inpainting, and reconstruction from few and noisy measurements. This success can be attributed in part to their ability to represent and generate natural images well. Contrary to classical tools such as wavelets, image-generating deep neural networks have a large number of parameters---typically a multiple of their output dimension---and need to be trained on large datasets. In this paper, we propose an untrained simple image model, called the deep decoder, which is a deep neural network that can generate natural images from very few weight parameters. The deep decoder has a simple architecture with no convolutions and fewer weight parameters than the output dimensionality. This underparameterization enables the deep decoder to compress images into a concise set of network weights, which we show is on par with wavelet-based thresholding. Further, underparameterization provides a barrier to overfitting, allowing the deep decoder to have state-of-the-art performance for denoising. The deep decoder is simple in the sense that each layer has an identical structure that consists of only one upsampling unit, pixel-wise linear combination of channels, ReLU activation, and channelwise normalization. This simplicity makes the network amenable to theoretical analysis, and it sheds light on the aspects of neural networks that enable them to form effective signal representations. 
    more » « less
  5. Learning to optimize (L2O) has recently emerged as a promising approach to solving optimization problems by exploiting the strong prediction power of neural networks and offering lower runtime complexity than conventional solvers. While L2O has been applied to various problems, a crucial yet challenging class of problems — robust combinatorial optimization in the form of minimax optimization — have largely remained under-explored. In addition to the exponentially large decision space, a key challenge for robust combinatorial optimization lies in the inner optimization problem, which is typically non-convex and entangled with outer optimization. In this paper, we study robust combinatorial optimization and propose a novel learning-based optimizer, called LRCO (Learning for Robust Combinatorial Optimization), which quickly outputs a robust solution in the presence of uncertain context. LRCO leverages a pair of learning-based optimizers — one for the minimizer and the other for the maximizer — that use their respective objective functions as losses and can be trained without the need of labels for training problem instances. To evaluate the performance of LRCO, we perform simulations for the task offloading problem in vehicular edge computing. Our results highlight that LRCO can greatly reduce the worst-case cost and improve robustness, while having a very low runtime complexity. 
    more » « less