skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detecting Compromised IoT Devices Using Autoencoders with Sequential Hypothesis Testing
IoT devices fundamentally lack built-in security mechanisms to protect themselves from security attacks. Existing works on improving IoT security mostly focus on detecting anomalous behaviors of IoT devices. However, these existing anomaly detection schemes may trigger an overwhelmingly large number of false alerts, rendering them unusable in detecting compromised IoT devices. In this paper we develop an effective and efficient framework, named CUMAD, to detect compromised IoT devices. Instead of directly relying on individual anomalous events, CUMAD aims to accumulate sufficient evidence in detecting compromised IoT devices, by integrating an autoencoder-based anomaly detection subsystem with a sequential probability ratio test (SPRT)-based sequential hypothesis testing subsystem. CUMAD can effectively reduce the number of false alerts in detecting compromised IoT devices, and moreover, it can detect compromised IoT devices quickly. Our evaluation studies based on the public-domain N-BaIoT dataset show that CUMAD can on average reduce the false positive rate from about 3.57% using only the autoencoder-based anomaly detection scheme to about 0.5%; in addition, CUMAD can detect compromised IoT devices quickly, with less than 5 observations on average.  more » « less
Award ID(s):
1662487
PAR ID:
10483616
Author(s) / Creator(s):
; ;
Editor(s):
He, J.; Palpanas, T.; Wang, W.
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Bigdata 2023
Subject(s) / Keyword(s):
IOt, traffic analysis, network security
Format(s):
Medium: X
Location:
Sorrento, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. IoT devices fundamentally lack built-in security mechanisms to protect themselves from security attacks. Existing works on improving IoT security mostly focus on detecting anomalous behaviors of IoT devices. However, these existing anomaly detection schemes may trigger an overwhelmingly large number of false alerts, rendering them unusable in detecting compromised IoT devices. In this paper we develop an effective and efficient framework, named CUMAD, to detect compromised IoT devices. Instead of directly relying on individual anomalous events, CUMAD aims to accumulate sufficient evidence in detecting compromised IoT devices, by integrating an autoencoder-based anomaly detection subsystem with a sequential probability ratio test (SPRT)-based sequential hypothesis testing subsystem. CUMAD can effectively reduce the number of false alerts in detecting compromised IoT devices, and moreover, it can detect compromised IoT devices quickly. Our evaluation studies based on the public-domain N-BaIoT dataset show that CUMAD can on average reduce the false positive rate from about 3.57% using only the autoencoder-based anomaly detection scheme to about 0.5%; in addition, CUMAD can detect compromised IoT devices quickly, with less than 5 observations on average. 
    more » « less
  2. null (Ed.)
    Recent self-propagating malware (SPM) campaigns compromised hundred of thousands of victim machines on the Internet. It is challenging to detect these attacks in their early stages, as adversaries utilize common network services, use novel techniques, and can evade existing detection mechanisms. We propose PORTFILER (PORT-Level Network Traffic ProFILER), a new machine learning system applied to network traffic for detecting SPM attacks. PORTFILER extracts port-level features from the Zeek connection logs collected at a border of a monitored network, applies anomaly detection techniques to identify suspicious events, and ranks the alerts across ports for investigation by the Security Operations Center (SOC). We propose a novel ensemble methodology for aggregating individual models in PORTFILER that increases resilience against several evasion strategies compared to standard ML baselines. We extensively evaluate PORTFILER on traffic collected from two university networks, and show that it can detect SPM attacks with different patterns, such as WannaCry and Mirai, and performs well under evasion. Ranking across ports achieves precision over 0.94 and false positive rates below 8 × 10−4 in the top 100 highly ranked alerts. When deployed on the university networks, PORTFILER detected anomalous SPM-like activity on one of the campus networks, confirmed by the university SOC as malicious. PORTFILER also detected a Mirai attack recreated on the two university networks with higher precision and recall than deep learning based autoencoder methods. 
    more » « less
  3. Abstract The CMS detector is a general-purpose apparatus that detects high-energy collisions produced at the LHC. Online data quality monitoring of the CMS electromagnetic calorimeter is a vital operational tool that allows detector experts to quickly identify, localize, and diagnose a broad range of detector issues that could affect the quality of physics data. A real-time autoencoder-based anomaly detection system using semi-supervised machine learning is presented enabling the detection of anomalies in the CMS electromagnetic calorimeter data. A novel method is introduced which maximizes the anomaly detection performance by exploiting the time-dependent evolution of anomalies as well as spatial variations in the detector response. The autoencoder-based system is able to efficiently detect anomalies, while maintaining a very low false discovery rate. The performance of the system is validated with anomalies found in 2018 and 2022 LHC collision data. In addition, the first results from deploying the autoencoder-based system in the CMS online data quality monitoring workflow during the beginning of Run 3 of the LHC are presented, showing its ability to detect issues missed by the existing system. 
    more » « less
  4. Vehicles can utilize their sensors or receive messages from other vehicles to acquire information about the surrounding environments. However, the information may be inaccurate, faulty, or maliciously compromised due to sensor failures, communication faults, or security attacks. The goal of this work is to detect if a lane-changing decision and the sensed or received information are anomalous. We develop three anomaly detection approaches based on deep learning: a classifier approach, a predictor approach, and a hybrid approach combining the classifier and the predictor. All of them do not need anomalous data nor lateral features so that they can generally consider lane-changing decisions before the vehicles start moving along the lateral axis. They achieve at least 82% and up to 93% F1 scores against anomaly on data from Simulation of Urban MObility (SUMO) and HighD. We also examine system properties and verify that the detected anomaly includes more dangerous scenarios. 
    more » « less
  5. Understanding network traffic characteristics of IoT devices plays a critical role in improving both the performance and security of IoT devices, including IoT device identification, classification, and anomaly detection. Although a number of existing research efforts have developed machine-learning based algorithms to help address the challenges in improving the security of IoT devices, none of them have provided detailed studies on the network traffic characteristics of IoT devices. In this paper we collect and analyze the network traffic generated in a typical smart homes environment consisting of a set of common IoT (and non-IoT) devices. We analyze the network traffic characteristics of IoT devices from three complementary aspects: remote network servers and port numbers that IoT devices connect to, flow-level traffic characteristics such as flow duration, and packet-level traffic characteristics such as packet inter-arrival time. Our study provides critical insights into the operational and behavioral characteristics of IoT devices, which can help develop more effective security and performance algorithms for IoT devices. 
    more » « less