skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on December 15, 2024

Title: Detecting Compromised IoT Devices Using Autoencoders with Sequential Hypothesis Testing
IoT devices fundamentally lack built-in security mechanisms to protect themselves from security attacks. Existing works on improving IoT security mostly focus on detecting anomalous behaviors of IoT devices. However, these existing anomaly detection schemes may trigger an overwhelmingly large number of false alerts, rendering them unusable in detecting compromised IoT devices. In this paper we develop an effective and efficient framework, named CUMAD, to detect compromised IoT devices. Instead of directly relying on individual anomalous events, CUMAD aims to accumulate sufficient evidence in detecting compromised IoT devices, by integrating an autoencoder-based anomaly detection subsystem with a sequential probability ratio test (SPRT)-based sequential hypothesis testing subsystem. CUMAD can effectively reduce the number of false alerts in detecting compromised IoT devices, and moreover, it can detect compromised IoT devices quickly. Our evaluation studies based on the public-domain N-BaIoT dataset show that CUMAD can on average reduce the false positive rate from about 3.57% using only the autoencoder-based anomaly detection scheme to about 0.5%; in addition, CUMAD can detect compromised IoT devices quickly, with less than 5 observations on average.  more » « less
Award ID(s):
1662487
NSF-PAR ID:
10483799
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Bigdata 2023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. He, J. ; Palpanas, T. ; Wang, W. (Ed.)
    IoT devices fundamentally lack built-in security mechanisms to protect themselves from security attacks. Existing works on improving IoT security mostly focus on detecting anomalous behaviors of IoT devices. However, these existing anomaly detection schemes may trigger an overwhelmingly large number of false alerts, rendering them unusable in detecting compromised IoT devices. In this paper we develop an effective and efficient framework, named CUMAD, to detect compromised IoT devices. Instead of directly relying on individual anomalous events, CUMAD aims to accumulate sufficient evidence in detecting compromised IoT devices, by integrating an autoencoder-based anomaly detection subsystem with a sequential probability ratio test (SPRT)-based sequential hypothesis testing subsystem. CUMAD can effectively reduce the number of false alerts in detecting compromised IoT devices, and moreover, it can detect compromised IoT devices quickly. Our evaluation studies based on the public-domain N-BaIoT dataset show that CUMAD can on average reduce the false positive rate from about 3.57% using only the autoencoder-based anomaly detection scheme to about 0.5%; in addition, CUMAD can detect compromised IoT devices quickly, with less than 5 observations on average. 
    more » « less
  2. null (Ed.)
    Recent self-propagating malware (SPM) campaigns compromised hundred of thousands of victim machines on the Internet. It is challenging to detect these attacks in their early stages, as adversaries utilize common network services, use novel techniques, and can evade existing detection mechanisms. We propose PORTFILER (PORT-Level Network Traffic ProFILER), a new machine learning system applied to network traffic for detecting SPM attacks. PORTFILER extracts port-level features from the Zeek connection logs collected at a border of a monitored network, applies anomaly detection techniques to identify suspicious events, and ranks the alerts across ports for investigation by the Security Operations Center (SOC). We propose a novel ensemble methodology for aggregating individual models in PORTFILER that increases resilience against several evasion strategies compared to standard ML baselines. We extensively evaluate PORTFILER on traffic collected from two university networks, and show that it can detect SPM attacks with different patterns, such as WannaCry and Mirai, and performs well under evasion. Ranking across ports achieves precision over 0.94 and false positive rates below 8 × 10−4 in the top 100 highly ranked alerts. When deployed on the university networks, PORTFILER detected anomalous SPM-like activity on one of the campus networks, confirmed by the university SOC as malicious. PORTFILER also detected a Mirai attack recreated on the two university networks with higher precision and recall than deep learning based autoencoder methods. 
    more » « less
  3. The monitoring of data streams with a network structure have drawn increasing attention due to its wide applications in modern process control. In these applications, high-dimensional sensor nodes are interconnected with an underlying network topology. In such a case, abnormalities occurring to any node may propagate dynamically across the network and cause changes of other nodes over time. Furthermore, high dimensionality of such data significantly increased the cost of resources for data transmission and computation, such that only partial observations can be transmitted or processed in practice. Overall, how to quickly detect abnormalities in such large networks with resource constraints remains a challenge, especially due to the sampling uncertainty under the dynamic anomaly occurrences and network-based patterns. In this paper, we incorporate network structure information into the monitoring and adaptive sampling methodologies for quick anomaly detection in large networks where only partial observations are available. We develop a general monitoring and adaptive sampling method and further extend it to the case with memory constraints, both of which exploit network distance and centrality information for better process monitoring and identification of abnormalities. Theoretical investigations of the proposed methods demonstrate their sampling efficiency on balancing between exploration and exploitation, as well as the detection performance guarantee. Numerical simulations and a case study on power network have demonstrated the superiority of the proposed methods in detecting various types of shifts. Note to Practitioners —Continuous monitoring of networks for anomalous events is critical for a large number of applications involving power networks, computer networks, epidemiological surveillance, social networks, etc. This paper aims at addressing the challenges in monitoring large networks in cases where monitoring resources are limited such that only a subset of nodes in the network is observable. Specifically, we integrate network structure information of nodes for constructing sequential detection methods via effective data augmentation, and for designing adaptive sampling algorithms to observe suspicious nodes that are likely to be abnormal. Then, the method is further generalized to the case that the memory of the computation is also constrained due to the network size. The developed method is greatly beneficial and effective for various anomaly patterns, especially when the initial anomaly randomly occurs to nodes in the network. The proposed methods are demonstrated to be capable of quickly detecting changes in the network and dynamically changes the sampling priority based on online observations in various cases, as shown in the theoretical investigation, simulations and case studies. 
    more » « less
  4. Abstract

    Detection of deception attacks is pivotal to ensure the safe and reliable operation of cyber-physical systems (CPS). Detection of such attacks needs to consider time-series sequences and is very challenging especially for autonomous vehicles that rely on high-dimensional observations from camera sensors. The paper presents an approach to detect deception attacks in real-time utilizing sensor observations, with a special focus on high-dimensional observations. The approach is based on inductive conformal anomaly detection (ICAD) and utilizes a novel generative model which consists of a variational autoencoder (VAE) and a recurrent neural network (RNN) that is used to learn both spatial and temporal features of the normal dynamic behavior of the system. The model can be used to predict the observations for multiple time steps, and the predictions are then compared with actual observations to efficiently quantify the nonconformity of a sequence under attack relative to the expected normal behavior, thereby enabling real-time detection of attacks using high-dimensional sequential data. We evaluate the approach empirically using two simulation case studies of an advanced emergency braking system and an autonomous car racing example, as well as a real-world secure water treatment dataset. The experiments show that the proposed method outperforms other detection methods, and in most experiments, both false positive and false negative rates are less than 10%. Furthermore, execution times measured on both powerful cloud machines and embedded devices are relatively short, thereby enabling real-time detection.

     
    more » « less
  5. null (Ed.)
    In successful enterprise attacks, adversaries often need to gain access to additional machines beyond their initial point of compromise, a set of internal movements known as lateral movement. We present Hopper, a system for detecting lateral movement based on commonly available enterprise logs. Hopper constructs a graph of login activity among internal machines and then identifies suspicious sequences of logins that correspond to lateral movement. To understand the larger context of each login, Hopper employs an inference algorithm to identify the broader path(s) of movement that each login belongs to and the causal user responsible for performing a path's logins. Hopper then leverages this path inference algorithm, in conjunction with a set of detection rules and a new anomaly scoring algorithm, to surface the login paths most likely to reflect lateral movement. On a 15-month enterprise dataset consisting of over 780 million internal logins, Hopper achieves a 94.5% detection rate across over 300 realistic attack scenarios, including one red team attack, while generating an average of < 9 alerts per day. In contrast, to detect the same number of attacks, prior state-of-the-art systems would need to generate nearly 8× as many false positives. 
    more » « less