Flooding occurs at different scales and unevenly affects urban populations based on the broader social, ecological, and technological system (SETS) characteristics particular to cities. As hydrological models improve in spatial scale and account for more mechanisms of flooding, there is a continuous need to examine the re- lationships between flood exposure and SETS drivers of flood vulnerability. In this study, we related fine-scale measures of future flood exposure—the First Street Foundation’s Flood Factor and estimated change in chance of extreme flood exposure—to SETS indicators like building age, poverty, and historical redlining, at the parcel and census block group (CBG) scales in Portland, OR, Phoenix, AZ, Baltimore, MD, and Atlanta, GA. We used standard regression models and accounted for spatial bias in relationships. The results show that flood exposure was more often correlated with SETS variables at the parcel scale than at the CBG scale, indicating scale dependence. However, these relationships were often inconsistent among cities, indicating place-dependence. We found that marginalized populations were significantly more exposed to future flooding at the CBG scale. Combining newly-available, high-resolution future flood risk estimates with SETS data available at multiple scales offers cities a new set of tools to assess the exposure and multi-dimensional vulnerability of populations. These tools will better equip city managers to proactively plan and implement equitable interventions to meet evolving hazard exposure.
more »
« less
Social and environmental vulnerability to flooding: Investigating cross-scale hypotheses
Flooding is a natural hazard that touches nearly all facets of the globe and is expected to become more frequent and intensified due to climate and land-use change. However, flooding does not impact all individuals equally. Therefore, understanding how flooding impacts distribute across populations of different socioeconomic and demographic backgrounds is vital. One approach to reducing flood risk on people is using indicators, such as social vulnerability indices and flood exposure metrics, to inform decision-making for flood risk management. However, such indicators can face the scale and zonal effect produced by the Modifiable Areal Unit Problem (MAUP). This study investigates how the U.S. Census block group, tract, and county scale selection impacts social vulnerability and flood exposure outcomes within coastal Virginia, USA. Here we show how (1) scale selection can obstruct our understanding of drivers of vulnerability, (2) increasingly aggregated scales significantly undercount highly vulnerable populations, and (3) hotspot clusters of social vulnerability and flood exposure can identify variable priority areas for current and future flood risk reduction. Study results present considerations about using such indicators, given the real-life consequences that can occur due to the MAUP. The results of this work warrant understanding the implications of scale selection on research methodological approaches and what this means for practitioners and policymakers that utilize such information to help guide flood mitigation strategies.
more »
« less
- PAR ID:
- 10483663
- Publisher / Repository:
- HydroShare
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Exposure to sea-level rise (SLR) and flooding will make some areas uninhabitable, and the increased demand for housing in safer areas may cause displacement through economic pressures. Anticipating such direct and indirect impacts of SLR is important for equitable adaptation policies. Here we build upon recent advances in flood exposure modeling and social vulnerability assessment to demonstrate a framework for estimating the direct and indirect impacts of SLR on mobility. Using two spatially distributed indicators of vulnerability and exposure, four specific modes of climate mobility are characterized: (1) minimally exposed to SLR (Stable), (2) directly exposed to SLR with capacity to relocate (Migrating), (3) indirectly exposed to SLR through economic pressures (Displaced), and (4) directly exposed to SLR without capacity to relocate (Trapped). We explore these dynamics within Miami-Dade County, USA, a metropolitan region with substantial social inequality and SLR exposure. Social vulnerability is estimated by cluster analysis using 13 social indicators at the census tract scale. Exposure is estimated under increasing SLR using a 1.5 m resolution compound flood hazard model accounting for inundation from high tides and rising groundwater and flooding from extreme precipitation and storm surge. Social vulnerability and exposure are intersected at the scale of residential buildings where exposed population is estimated by dasymetric methods. Under 1 m SLR, 56% of residents in areas of low flood hazard may experience displacement, whereas 26% of the population risks being trapped (19%) in or migrating (7%) from areas of high flood hazard, and concerns of depopulation and fiscal stress increase within at least 9 municipalities where 50% or more of their total population is exposed to flooding. As SLR increases from 1 to 2 m, the dominant flood driver shifts from precipitation to inundation, with population exposed to inundation rising from 2.8% to 54.7%. Understanding shifting geographies of flood risks and the potential for different modes of climate mobility can enable adaptation planning across household-to-regional scales.more » « less
-
Urban flooding is a growing threat due to land use and climate change. Vulnerable populations tend to have greater exposure to flooding as a result of historical societal and institutional processes. Most flood vulnerability studies focus on a single large flood, neglecting the impact of small, frequent floods. Therefore, there is a need to investigate inequitable flood exposure across a range of event magnitudes and frequencies. To explore this question, we develop a novel score of inequitable flood risk by defining risk as a function of frequency, exposure, and vulnerability. This analysis combines high-resolution, parcel-scale compounded fluvial and pluvial flood data with census data at the census block group scale. We focus on six census tracts within Athens-Clarke County, Georgia that are highly developed with diverse populations. We define vulnerable populations as non-Hispanic Black, Hispanic, and households under the poverty level and use dasymetric mapping techniques to calculate the over-representation of these populations in flood zones. Inequitable risks at each census tract (approximately neighborhood scale) were estimated for multiple (e.g., 5-, 10-, 20-, 50-, and 100-year) flood return periods. Results show that the relatively greatest flood risk inequities occur for the 10-year flood and not at the largest event. We also found that the size of inequity is dynamic, depending on the flood magnitude. Therefore, addressing a range of events including smaller, more frequent floods can increase equity and reveal opportunities that may be missed if only one event is considered.more » « less
-
Abstract Extreme flooding events are becoming more frequent and costly, and impacts have been concentrated in cities where exposure and vulnerability are both heightened. To manage risks, governments, the private sector, and households now rely on flood hazard data from national‐scale models that lack accuracy in urban areas due to unresolved drainage processes and infrastructure. Here we assess the uncertainties of First Street Foundation (FSF) flood hazard data, available across the U.S., using a new model (PRIMo‐Drain) that resolves drainage infrastructure and fine resolution drainage dynamics. Using the case of Los Angeles, California, we find that FSF and PRIMo‐Drain estimates of population and property value exposed to 1%‐ and 5%‐annual‐chance hazards diverge at finer scales of governance, for example, by 4‐ to 18‐fold at the municipal scale. FSF and PRIMo‐Drain data often predict opposite patterns of exposure inequality across social groups (e.g., Black, White, Disadvantaged). Further, at the county scale, we compute a Model Agreement Index of only 24%—a ∼1 in 4 chance of models agreeing upon which properties are at risk. Collectively, these differences point to limited capacity of FSF data to confidently assess which municipalities, social groups, and individual properties are at risk of flooding within urban areas. These results caution that national‐scale model data at present may misinform urban flood risk strategies and lead to maladaptation, underscoring the importance of refined and validated urban models.more » « less
-
Research has demonstrated that natural disasters, like flooding that are increasing with climate change, can have profound mental health effects. Moreover, these outcomes are not experienced evenly across the population with disadvantaged populations like racial/ethnic minorities and lower socio-economic status individuals being more likely to report psychological diagnoses and symptoms related to floods. However, the mechanisms that could account for the link between social vulnerability and worry about the threat of flooding remain poorly understood. In this analysis, we use a 2022 survey of Houston-area residents to examine how perceived flood risk and subjective flood preparedness relate to racial/ethnic differences in worry about the threat of flooding. We find that both individual-level and area-level race/ethnicity are significantly related to greater worry about the threat of flooding. Further, this is partially mediated by perceived flood risk, but not subjective flood preparedness. This suggests that policies and infrastructure priorities that reduce risk rather than prepare households for flooding would accomplish more in closing the gap in social disparities in mental health outcomes from flooding.more » « less
An official website of the United States government
