Abstract Lasting updrafts are necessary to produce severe hail; conventional wisdom suggests that extremely large hailstones require updrafts of commensurate strength. Because updraft strength is largely controlled by convective available potential energy (CAPE), one would expect environments with larger CAPE to be conducive to storms producing larger hail. By systematically varying CAPE in a horizontally homogeneous initial environment, we simulate hail production in high-shear, high-instability supercell storms using Cloud Model 1 and a detailed 3D hail growth trajectory model. Our results suggest that CAPE modulates the updraft’s strength, width, and horizontal wind field, as well as the liquid water content along hailstones’ trajectories, all of which have a significant impact on final hail sizes. In particular, hail sizes are maximized for intermediate CAPE values in the range we examined. Results show a non-monotonic relationship between the hailstones’ residence time and CAPE due to changes to the updraft wind field. The ratio of updraft area to southerly wind speed within the updraft serves as a proxy for residence time. Storms in environments with large CAPE may produce smaller hail because the in-updraft horizontal wind speeds become too great, and hailstones are prematurely ejected out of the optimal growth region. Liquid water content (LWC) along favorable hailstone pathways also exhibits peak values for intermediate CAPE values, owing to the horizontal displacement across the midlevel updraft of moist inflow air from differing source levels. In other words, larger CAPE does not equal larger hail, and storm-structural nuances must be examined.
more »
« less
Analysis of Hail Production via Simulated Hailstone Trajectories in the 29 May 2012 Kingfisher, Oklahoma, Supercell
Abstract This study uses a new, unique dataset created by combining multi-Doppler radar wind and reflectivity analysis, diabatic Lagrangian analysis (DLA) retrievals of temperature and water substance, and a complex hail trajectory model to create millions of numerically simulated hail trajectories in the Kingfisher, Oklahoma, supercell on 29 May 2012. The DLA output variables are used to obtain a realistic, 4D depiction of the storm’s thermal and hydrometeor structure as required input to the detailed hail growth trajectory model. Hail embryos are initialized in the hail growth module every 3 min of the radar analysis period (2251–0000 UTC) to produce over 2.7 million hail trajectories. A spatial integration technique considering all trajectories is used to identify locations within the supercell where melted particles and subsevere and severe hailstones reside in their lowest and highest concentrations. It is found that hailstones are more likely to reside for longer periods closer to the downshear updraft within the midlevel mesocyclone in a region of decelerated midlevel mesocyclonic horizontal flow, termed the downshear deceleration zone (DDZ). Additionally, clusters of trajectories are analyzed using a trajectory clustering method. Trajectory clusters show there are many trajectory pathways that result in hailstones ≥ 4.5 cm, including trajectories that begin upshear of the updraft away from ideal growth conditions and trajectories that grow within the DDZ. There are also trajectory clusters with similar shapes that experience widely different environmental and hailstone characteristics along the trajectory. Significance StatementThe purpose of this study is to understand how hail grew in a thunderstorm that was observed by numerous instruments. The observations were input into a hail trajectory model to simulate hail growth. We found a part of the storm near the updraft where hailstones could remain aloft longer and therefore grow larger. Most modeled severe hailstones were found in the storm in this region. However, we also found that there are many different pathways hailstones can take to become large, although there are still some common characteristics among the pathways.
more »
« less
- Award ID(s):
- 1855100
- PAR ID:
- 10483789
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 152
- Issue:
- 1
- ISSN:
- 0027-0644
- Format(s):
- Medium: X Size: p. 245-276
- Size(s):
- p. 245-276
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract A detailed microphysical model of hail growth is developed and applied to idealized numerical simulations of deep convective storms. Hailstone embryos of various sizes and densities may be initialized in and around the simulated convective storm updraft, and then are tracked as they are advected and grow through various microphysical processes. Application to an idealized squall line and supercell storm results in a plausibly realistic distribution of maximum hailstone sizes for each. Simulated hail growth trajectories through idealized supercell storms exhibit many consistencies with previous hail trajectory work that used observed storms. Systematic tests of uncertain model parameters and parameterizations are performed, with results highlighting the sensitivity of hail size distributions to these changes. A set of idealized simulations is performed for supercells in environments with varying vertical wind shear to extend and clarify our prior work. The trajectory calculations reveal that, with increased zonal deep-layer shear, broader updrafts lead to increased residence time and thus larger maximum hail sizes. For cases with increased meridional low-level shear, updraft width is also increased, but hailstone sizes are smaller. This is a result of decreased residence time in the updraft, owing to faster northward flow within the updraft that advects hailstones through the growth region more rapidly. The results suggest that environments leading to weakened horizontal flow within supercell updrafts may lead to larger maximum hailstone sizes.more » « less
-
Hail trajectory modeling is a popular tool to explore how environment and storm characteristics allow or prohibit large hail growth. However, trajectory models are complex and computationally expensive: storm dynamics relevant to hail growth are inextricably linked such that ``cause’' and ``correlation” are difficult to distinguish. Therefore, we develop a novel hail trajectory model that can be used to untangle hail growth processes. Toward this end, we explore the vertical structure of vertical velocity and liquid water content in updrafts and define analytic functions that approximate the thermodynamic prediction of these quantities. These analytic profiles are used, along with a temporal updraft-pass parameterization to define a 2D updraft (defined in height and time) in which hailstones can grow. Hail growth in this 2D updraft is fully defined by a set of 16 scalar parameters that act as turnable knobs to produce unique hail trajectories. This article is Part I of a series using this modeling framework to explore the nature of hail growth. Here, we define the model and test its ability to produce realistic hail trajectories and hail sizes through a Monte Carlo simulation with physical couplings maintained. The size distribution from 1 billion simulated trajectories is exponential and has maximum hail size of 25.7 cm. Stochasticity in the model’s representation of hail fall speed and cross-sectional area is explored and produces some variability in the resulting hailstone sizes. The model produced and evaluated here will be used in further studies to identify how environment, updraft, and hail embryo characteristics individually impact hail growth.more » « less
-
Abstract Supercell storms are commonly responsible for severe hail, which is the costliest severe storm hazard in the United States and elsewhere. Radar observations of such storms are common and have been leveraged to estimate hail size and severe hail occurrence. However, many established relationships between radar-observed storm characteristics and severe hail occurrence have been found using data from few storms and in isolation from other radar metrics. This study leverages a 10-yr record of polarimetric Doppler radar observations in the United States to evaluate and compare radar observations of thousands of severe hail–producing supercells based on their maximum hail size. In agreement with prior studies, it is found that increasing hail size relates to increasing volume of high (≥50 dBZ) radar reflectivity, increasing midaltitude mesocyclone rotation (azimuthal shear), increasing storm-top divergence, and decreased differential reflectivity and copolar correlation coefficient at low levels (mostly below the environmental 0°C level). New insights include increasing vertical alignment of the storm mesocyclone with increasing hail size and a Doppler velocity spectrum width minimum aloft near storm center that increases in area with increasing hail size and is argued to indicate increasing updraft width. To complement the extensive radar analysis, near-storm environments from reanalyses are compared and indicate that the greatest environmental differences exist in the middle troposphere (within the hail growth region), especially the wind speed perpendicular to storm motion. Recommendations are given for future improvements to radar-based hail-size estimation.more » « less
-
Abstract Modeled hail trajectories have previously been studied in individual observed supercells or in simulated supercells with similar background environments. To explore the impact of changing updraft structure on hail formation from a different perspective, this study analyzes detailed hail trajectories in a large ensemble of time-averaged supercell-like updrafts. The updrafts are created with an idealized heat source, which allows the systematic investigation of the full range of updraft widths and intensities reported in the literature. The simulations exhibit a dominant hail trajectory pathway with a single ascent and a curved horizontal trace. However, a systematic shift in the trajectories and in their start and end locations is found with increasing updraft intensity and updraft width. Furthermore, wider updrafts but with only moderate intensity provide optimal conditions for the hail of most sizes. The exception is giant hail, which requires both wide and intense updrafts. This result is partially linked to the occurrence of an alternative trajectory pathway characterized by the recycling of hailstones (1–4 cm) in the back-sheared anvil region, which then grew to giant size after reentering the updraft.more » « less
An official website of the United States government
