skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum torque on a non-reciprocal body out of thermal equilibrium and induced by a magnetic field of arbitrary strength
Abstract A stationary body that is out of thermal equilibrium with its environment, and for which the electric susceptibility is non-reciprocal, experiences a quantum torque. This arises from the spatially non-symmetric electrical response of the body to its interaction with the non-equilibrium thermal fluctuations of the electromagnetic field: the non-equilibrium nature of the thermal field fluctuations results in a net energy flow through the body, and the spatially non-symmetric nature of the electrical response of the body to its interaction with these field fluctuations causes that energy flow to be transformed into a rotational motion. We establish an exact, closed-form, analytical expression for this torque in the case that the environment is the vacuum and the material of the body is described by a damped oscillator model, where the non-reciprocal nature of the electric susceptibility is induced by an external magnetic field, as for magneto-optical media. We also generalise this expression to the context in which the body is slowly rotating. By exploring the high-temperature expansion of the torque, we are able to identify the separate contributions from the continuous spectral distribution of the non-reciprocal electric susceptibility, and from the resonance modes. In particular, we find that the torque persists in the limiting case of zero damping parameter, due to the contribution of the resonance modes. We also consider the low-temperature expansion of the torque. This work extends our previous consideration of this model to an external magnetic field of arbitrary strength, thereby including non-linear magnetic field effects.  more » « less
Award ID(s):
2008417
PAR ID:
10483854
Author(s) / Creator(s):
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The European Physical Journal Special Topics
Volume:
232
Issue:
20-22
ISSN:
1951-6355
Format(s):
Medium: X Size: p. 3197-3208
Size(s):
p. 3197-3208
Sponsoring Org:
National Science Foundation
More Like this
  1. In a previous paper we showed that an inhomogeneous body in vacuum will experience a spontaneous force if it is not in thermal equilibrium with its environment. This is due to the asymmetric asymptotic radiation pattern such an object emits. We demonstrated this self-propulsive force by considering an expansion in powers of the electric susceptibility: A torque arises in first order, but only if the material constituting the body is nonreciprocal. No force arises in first order. A force does occur for bodies made of ordinary (reciprocal) materials in second order. Here we extend these considerations to the torque. As one would expect, a spontaneous torque will also appear on an inhomogeneous chiral object if it is out of thermal equilibrium with its environment. Once a chiral body starts to rotate, it will experience a small quantum frictional torque, but much more important, unless a mechanism is provided to maintain the nonequilibrium state, is thermalization: The body will rapidly reach thermal equilibrium with the vacuum, and the angular acceleration will essentially become zero. For a small, or even a large, inhomogeneous chiral body, a terminal angular velocity will result, which seems to be in the realm of observability. 
    more » « less
  2. This paper summarizes our recent efforts to understand spontaneous quantum vacuum forces and torques, which require that a stationary object be out of thermal equilibrium with the blackbody background radiation. We proceed by a systematic expansion in powers of the electric susceptibility. In first order, no spontaneous force can arise, although a torque can appear, but only if the body is composed of nonreciprocal material. In second order, both forces and torques can appear, with ordinary materials, but only if the body is inhomogeneous. In higher orders, this last requirement may be removed. We give a number of examples of bodies displaying second-order spontaneous forces and torques, some of which might be amenable to observation. 
    more » « less
  3. Abstract A mathematical model has been developed to study far-field and near-field thermal emission from non-continuous periodic structures. Non-continuous periodic structures with appropriate geometries and materials can support electric or magnetic resonance, idealized for designing far-field perfect absorbers and near-field emitters/absorbers supporting long-distance photon tunneling. However, these structures do not have close format dyadic Green’s function to describe the thermal radiation from randomly fluctuating thermal current. Thus, simulating the near-field radiation spectrum between emitters and collectors patterned with these non-continuous periodic structures is challenging. Though finding eigenmodes of white-noise-like fluctuating thermal current satisfying this specific geometry, we extended the Wiener-Chaotic expansion type of near-field simulation to study far-field and near-field thermal emission from non-continuous periodic structures. After verifications with reference cases, the new mathematical method is applied to study photon tunneling between the emitter and the collector patterned with single-ring split ring resonance rings (SRR) supporting magnetic field resonance. It is observed from the new mathematical model that long photon tunneling can occur under such a configuration through magnetic field coupling between the emitter and collector at the magnetic resonance frequency of SRRs. 
    more » « less
  4. Interaction of electric fields with biological cells is indispensable for many physiological processes. Thermal electrical noise in the cellular environment has long been considered as the minimum threshold for detection of electrical signals by cells. However, there is compelling experimental evidence that the minimum electric field sensed by certain cells and organisms is many orders of magnitude weaker than the thermal electrical noise limit estimated purely under equilibrium considerations. We resolve this discrepancy by proposing a nonequilibrium statistical mechanics model for active electromechanical membranes and hypothesize the role of activity in modulating the minimum electrical field that can be detected by a biological membrane. Active membranes contain proteins that use external energy sources to carry out specific functions and drive the membrane away from equilibrium. The central idea behind our model is that active mechanisms, attributed to different sources, endow the membrane with the ability to sense and respond to electric fields that are deemed undetectable based on equilibrium statistical mechanics. Our model for active membranes is capable of reproducing different experimental data available in the literature by varying the activity. Elucidating how active matter can modulate the sensitivity of cells to electric signals can open avenues for a deeper understanding of physiological and pathological processes. 
    more » « less
  5. Abstract In this work we examine synthetic antiferromagnetic structures consisting of two, three, and four antiferromagnetic coupled layers, i.e. bilayers, trilayers, and tetralayers. We vary the thickness of the ferromagnetic layers across all structures and, using a macrospin formalism, find that the nearest neighbor exchange interaction between layers is consistent across all structures for a given thickness of the ferromagnetic layer. Our model and experimental results demonstrate significant differences in how the static equilibrium states of even and odd-layered structures evolve as a function of the external field. Even layered structures continuously evolve from a collinear antiferromagnetic state to a spin canted non-collinear magnetic configuration that is mirror-symmetric about the external field. In contrast, odd-layered structures begin with a ferrimagnetic ground state; at a critical field, the ferrimagnetic ground state evolves into a non-collinear state with broken symmetry. Specifically, the magnetic moments found in the odd-layered samples possess stable static equilibrium states that are no longer mirror-symmetric about the external field after a critical field is reached. 
    more » « less