We present a new method to sample conditioned trajectories of a system evolving under Langevin dynamics based on Brownian bridges. The trajectories are conditioned to end at a certain point (or in a certain region) in space. The bridge equations can be recast exactly in the form of a non-linear stochastic integro-differential equation. This equation can be very well approximated when the trajectories are closely bundled together in space, i.e., at low temperature, or for transition paths. The approximate equation can be solved iteratively using a fixed point method. We discuss how to choose the initial trajectories and show some examples of the performance of this method on some simple problems. This method allows us to generate conditioned trajectories with a high accuracy. 
                        more » 
                        « less   
                    
                            
                            Optimal control for sampling the transition path process and estimating rates
                        
                    
    
            Many processes in nature such as conformal changes in biomolecules and clusters of interacting particles, genetic switches, mechanical or electromechanical oscillators with added noise, and many others are modeled using stochastic differential equations with small white noise. The study of rare transitions between metastable states in such systems is of great interest and importance. The direct simulation of rare transitions is difficult due to long waiting times. Transition path theory is a mathematical framework for the quantitative description of rare events. Its crucial component is the committor function, the solution to a boundary value problem for the backward Kolmogorov equation. The key fact exploited in this work is that the optimal controller constructed from the committor leads to the generation of transition trajectories exclusively. We prove this fact for a broad class of stochastic differential equations. Moreover, we demonstrate that the committor computed for a dimensionally reduced system and then lifted to the original phase space still allows us to construct an effective controller and estimate the transition rate with reasonable accuracy. Furthermore, we propose an all-the- way-through scheme for computing the committor via neural networks, sampling the transition trajectories, and estimating the transition rate without meshing the space. We apply the proposed methodology to four test problems: the overdamped Langevin dynamics with Mueller’s potential and the rugged Mueller potential in 10D, the noisy bistable Duffing oscillator, and Lennard-Jones-7 in 2D. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2149913
- PAR ID:
- 10483888
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Communications in Nonlinear Science and Numerical Simulation
- Volume:
- 129
- Issue:
- C
- ISSN:
- 1007-5704
- Page Range / eLocation ID:
- 107701
- Subject(s) / Keyword(s):
- MSC: 93E20 60J20 65N99 Keywords: Transition path theory Optimal stochastic control Transition path process Committor Transition rate Langevin dynamics Overdamped Langevin dynamics Collective variables Sampling Neural network Lennard-Jones-7 Duffing oscillator
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract We formulate a class of stochastic partial differential equations based on Kelvin’s circulation theorem for ideal fluids. In these models, the velocity field is randomly transported by white-noise vector fields, as well as by its own average over realizations of this noise. We call these systems the Lagrangian averaged stochastic advection by Lie transport (LA SALT) equations. These equations are nonlinear and non-local, in both physical and probability space. Before taking this average, the equations recover the Stochastic Advection by Lie Transport (SALT) fluid equations introduced by Holm (Proc R Soc A 471(2176):20140963, 2015). Remarkably, the introduction of the non-locality in probability space in the form of momentum transported by its own mean velocity gives rise to a closed equation for the expectation field which comprises Navier–Stokes equations with Lie–Laplacian ‘dissipation’. As such, this form of non-locality provides a regularization mechanism. The formalism we develop is closely connected to the stochastic Weber velocity framework of Constantin and Iyer (Commun Pure Appl Math 61(3):330–345, 2008) in the case when the noise correlates are taken to be the constant basis vectors in $$\mathbb {R}^3$$ R 3 and, thus, the Lie–Laplacian reduces to the usual Laplacian. We extend this class of equations to allow for advected quantities to be present and affect the flow through exchange of kinetic and potential energies. The statistics of the solutions for the LA SALT fluid equations are found to be changing dynamically due to an array of intricate correlations among the physical variables. The statistical properties of the LA SALT physical variables propagate as local evolutionary equations which when spatially integrated become dynamical equations for the variances of the fluctuations. Essentially, the LA SALT theory is a non-equilibrium stochastic linear response theory for fluctuations in SALT fluids with advected quantities.more » « less
- 
            Transition path theory (TPT) offers a powerful formalism for extracting the rate and mechanism of rare dynamical transitions between metastable states. Most applications of TPT either focus on systems with modestly sized state spaces or use collective variables to try to tame the curse of dimensionality. Increasingly, expressive function approximators such as neural networks and tensor networks have shown promise in computing the central object of TPT, the committor function, even in very high-dimensional systems. That progress prompts our consideration of how one could use such a high-dimensional function to extract mechanistic insights. Here, we present and illustrate a straightforward but powerful way to track how individual dynamical coordinates evolve during a reactive event. The strategy, which involves marginalizing the reactive ensemble, naturally captures the evolution of the dynamical coordinate’s distribution, not just its mean reactive behavior.more » « less
- 
            In the study of stochastic systems, the committor function describes the probability that a system starting from an initial configuration x will reach a set B before a set A. This paper introduces an efficient and interpretable algorithm for approximating the committor, called the “fast committor machine” (FCM). The FCM uses simulated trajectory data to build a kernel-based model of the committor. The kernel function is constructed to emphasize low-dimensional subspaces that optimally describe the A to B transitions. The coefficients in the kernel model are determined using randomized linear algebra, leading to a runtime that scales linearly with the number of data points. In numerical experiments involving a triple-well potential and alanine dipeptide, the FCM yields higher accuracy and trains more quickly than a neural network with the same number of parameters. The FCM is also more interpretable than the neural net.more » « less
- 
            Many complex fluids can be described by continuum hydrodynamic field equations, to which noise must be added in order to capture thermal fluctuations. In almost all cases, the resulting coarse-grained stochastic partial differential equations carry a short-scale cutoff, which is also reflected in numerical discretisation schemes. We draw together our recent findings concerning the construction of such schemes and the interpretation of their continuum limits, focusing, for simplicity, on models with a purely diffusive scalar field, such as ‘Model B’ which describes phase separation in binary fluid mixtures. We address the requirement that the steady-state entropy production rate (EPR) must vanish for any stochastic hydrodynamic model in a thermal equilibrium. Only if this is achieved can the given discretisation scheme be relied upon to correctly calculate the nonvanishing EPR for ‘active field theories’ in which new terms are deliberately added to the fluctuating hydrodynamic equations that break detailed balance. To compute the correct probabilities of forward and time-reversed paths (whose ratio determines the EPR), we must make a careful treatment of so-called ‘spurious drift’ and other closely related terms that depend on the discretisation scheme. We show that such subtleties can arise not only in the temporal discretisation (as is well documented for stochastic ODEs with multiplicative noise) but also from spatial discretisation, even when noise is additive, as most active field theories assume. We then review how such noise can become multiplicative via off-diagonal couplings to additional fields that thermodynamically encode the underlying chemical processes responsible for activity. In this case, the spurious drift terms need careful accounting, not just to evaluate correctly the EPR but also to numerically implement the Langevin dynamics itself.more » « less
 An official website of the United States government
An official website of the United States government 
				
			
 
                                    