Abstract Subwavelength diffractive optics known as meta-optics have demonstrated the potential to significantly miniaturize imaging systems. However, despite impressive demonstrations, most meta-optical imaging systems suffer from strong chromatic aberrations, limiting their utilities. Here, we employ inverse-design to create broadband meta-optics operating in the long-wave infrared (LWIR) regime (8-12μm). Via a deep-learning assisted multi-scale differentiable framework that links meta-atoms to the phase, we maximize the wavelength-averaged volume under the modulation transfer function (MTF) surface of the meta-optics. Our design framework merges local phase-engineering via meta-atoms and global engineering of the scatterer within a single pipeline. We corroborate our design by fabricating and experimentally characterizing all-silicon LWIR meta-optics. Our engineered meta-optic is complemented by a simple computational backend that dramatically improves the quality of the captured image. We experimentally demonstrate a six-fold improvement of the wavelength-averaged Strehl ratio over the traditional hyperboloid metalens for broadband imaging.
more »
« less
Foveated thermal computational imaging prototype using all-silicon meta-optics
Foveated imaging provides a better tradeoff between situational awareness (field of view) and resolution, and is critical in long wavelength infrared regimes because of the size, weight, power, and cost of thermal sensors. We demonstrate computational foveated imaging by exploiting the ability of a meta-optical frontend to discriminate between different polarization states and a computational backend to reconstruct the captured image/video. The frontend is a three-element optic: the first element, which we call the “foveal” element, is a metalens that focuses s-polarized light at a distance off1without affecting the p-polarized light; the second element, which we call the “perifovea” element, is another metalens that focuses p-polarized light at a distance off2without affecting thes-polarized light. The third element is a freely rotating polarizer that dynamically changes the mixing ratios between the two polarization states. Both the foveal element (focal length=150mm; diameter=75mm) and the perifoveal element (focal length=25mm; diameter=25mm) were fabricated as polarization-sensitive, all-silicon, meta surfaces resulting in a large-aperture, 1:6 foveal expansion, thermal imaging capability. A computational backend then utilizes a deep image prior to separate the resultant multiplexed image or video into a foveated image consisting of a high resolution center and a lower-resolution large field of view context. We build a prototype system and demonstrate 12 frames per second real-time, thermal, foveated image and video capture..
more »
« less
- PAR ID:
- 10484041
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optica
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2334-2536
- Format(s):
- Medium: X Size: Article No. 18
- Size(s):
- Article No. 18
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a$${28}^{\circ}$$ field of view and 0.$${2}{\pi}$$ phase resolution ( ~ 0.$${1}{\lambda}$$ in air) for experiments with an endoscopic fiber bundle. Since the spectral functionality is encoded directly in the imaging lens, the metalens acts both as a focusing element and a spectral filter. The use of a simple computational backend will enable real-time operation. Key limitations in the adoption of phase imaging methods for endoscopy such as multiple acquisition, interferometric alignment or mechanical scanning are completely mitigated in the reported metalens based QPI.more » « less
-
Super-resolution (SR) is a well-studied technique for reconstructing high-resolution (HR) images from low-resolution (LR) ones. SR holds great promise for video streaming since an LR video segment can be transmitted from the video server to the client that then reconstructs the HR version using SR, resulting in a significant reduction in network bandwidth. However, SR is seldom used in practice for real-time video streaming, because the computational overhead of frame reconstruction results in large latency and low frame rate. To reduce the computational overhead and make SR practical, we propose a deep-learning-based SR method called Fo veated Cas caded Video Super Resolution (focas). focas relies on the fact that human eyes only have high acuity in a tiny central foveal region of the retina. focas uses more neural network blocks in the foveal region to provide higher video quality, while using fewer blocks in the periphery as lower quality is sufficient. To optimize the computational resources and reduce reconstruction latency, focas formulates and solves a convex optimization problem to decide the number of neural network blocks to use in each region of the frame. Using extensive experiments, we show that focas reduces the latency by 50%-70% while maintaining comparable visual quality as traditional (non-foveated) SR. Further, focas provides a 12-16x reduction in the client-to-server network bandwidth in comparison with sending the full HR video segments.more » « less
-
Abstract In conventional optical microscopes, image contrast of objects mainly results from the differences in light intensity and/or color. Muller matrix optical microscopes (MMMs), on the other hand, can provide significantly enhanced image contrast and rich information about objects by analyzing their interactions with polarized light. However, state‐of‐the‐art MMMs are fundamentally limited by bulky and slow polarization state generators and analyzers. Here, the study demonstrates a metasurface‐based MMM, i.e., Meta‐MMM, which is equipped with a chip‐integrated, single‐shot metasurface polarization state analyzer (Meta‐PSA). The Meta‐MMM is featured with high‐speed measurement (≈2s per Muller matrix (MM) image), superior operation stability, dual‐color operation, and high measurement accuracy (measurement error 1–2%) for MM imaging. The Meta‐MMM is applied to nanostructure characterization, surface morphology analysis, and discovering birefringent structures in honeybee wings. The Meta‐MMMs hold the promise to revolutionize various applications from biological imaging, medical diagnosis, and material characterization to industry inspection and space exploration.more » « less
-
High-resolution endoscopic optical imaging is a crucial technique in biological imaging to examine the inside organs. There is a trade-off between lateral resolution and depth of focus in such applications. Traditional Optical Coherence Tomography provides an increased depth range but falls short of desired resolution. The combination of both higher resolution and larger imaging depth of focus of metalens can improve the clinical utility of endoscopic optical imaging. In this work, we designed, analyzed, and fabricated a 500 µm diameter metalens operating at 1300 nm to achieve high resolution and large imaging depth of focus, therefore, addressing this need. The full width at half maximum and depth of focus for the proposed metalens are 3.10 and 286 µm, respectively.more » « less