skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impaired Neurovascular Coupling and Increased Functional Connectivity in the Frontal Cortex Predict Age‐Related Cognitive Dysfunction
Abstract Impaired cerebrovascular function contributes to the genesis of age‐related cognitive decline. In this study, the hypothesis is tested that impairments in neurovascular coupling (NVC) responses and brain network function predict cognitive dysfunction in older adults. Cerebromicrovascular and working memory function of healthy young (n= 21, 33.2±7.0 years) and aged (n= 30, 75.9±6.9 years) participants are assessed. To determine NVC responses and functional connectivity (FC) during a working memory (n‐back) paradigm, oxy‐ and deoxyhemoglobin concentration changes from the frontal cortex using functional near‐infrared spectroscopy are recorded. NVC responses are significantly impaired during the 2‐back task in aged participants, while the frontal networks are characterized by higher local and global connection strength, and dynamic FC (p< 0.05). Both impaired NVC and increased FC correlate with age‐related decline in accuracy during the 2‐back task. These findings suggest that task‐related brain states in older adults require stronger functional connections to compensate for the attenuated NVC responses associated with working memory load.  more » « less
Award ID(s):
2236459
PAR ID:
10484056
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
10
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sleep is critical to a variety of cognitive functions and insufficient sleep can have negative consequences for mood and behavior across the lifespan. An important open question is how sleep duration is related to functional brain organization which may in turn impact cognition. To characterize the functional brain networks related to sleep across youth and young adulthood, we analyzed data from the publicly available Human Connectome Project (HCP) dataset, which includesn‐back task‐based and resting‐state fMRI data from adults aged 22–35 years (taskn = 896; restn = 898). We applied connectome‐based predictive modeling (CPM) to predict participants' mean sleep duration from their functional connectivity patterns. Models trained and tested using 10‐fold cross‐validation predicted self‐reported average sleep duration for the past month fromn‐back task and resting‐state connectivity patterns. We replicated this finding in data from the 2‐year follow‐up study session of the Adolescent Brain Cognitive Development (ABCD) Study, which also includesn‐back task and resting‐state fMRI for adolescents aged 11–12 years (taskn = 786; restn = 1274) as well as Fitbit data reflecting average sleep duration per night over an average duration of 23.97 days. CPMs trained and tested with 10‐fold cross‐validation again predicted sleep duration fromn‐back task and resting‐state functional connectivity patterns. Furthermore, demonstrating that predictive models are robust across independent datasets, CPMs trained on rest data from the HCP sample successfully generalized to predict sleep duration in the ABCD Study sample and vice versa. Thus, common resting‐state functional brain connectivity patterns reflect sleep duration in youth and young adults. 
    more » « less
  2. null (Ed.)
    Abstract A diverse set of white matter connections supports seamless transitions between cognitive states. However, it remains unclear how these connections guide the temporal progression of large-scale brain activity patterns in different cognitive states. Here, we analyze the brain’s trajectories across a set of single time point activity patterns from functional magnetic resonance imaging data acquired during the resting state and an n-back working memory task. We find that specific temporal sequences of brain activity are modulated by cognitive load, associated with age, and related to task performance. Using diffusion-weighted imaging acquired from the same subjects, we apply tools from network control theory to show that linear spread of activity along white matter connections constrains the probabilities of these sequences at rest, while stimulus-driven visual inputs explain the sequences observed during the n-back task. Overall, these results elucidate the structural underpinnings of cognitively and developmentally relevant spatiotemporal brain dynamics. 
    more » « less
  3. Many goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults, causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual identification are mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory processing in these streams contribute to declines in visuomotor decision-making performance. Previously, we showed that in young adults, task demands influenced movement strategies during visuomotor decision-making, reflecting differential integration of sensory information between the two streams. Here, we asked the question if older adults would exhibit deficits in interactions between the two streams during demanding motor tasks. Older adults ( n = 15) and young controls ( n = 26) performed reaching or interception movements toward virtual objects. In some blocks of trials, participants also had to select an appropriate movement goal based on the shape of the object. Our results showed that older adults corrected fewer initial decision errors during both reaching and interception movements. During the interception decision task, older adults made more decision- and execution-related errors than young adults, which were related to early initiation of their movements. Together, these results suggest that older adults have a reduced ability to integrate new perceptual information to guide online action, which may reflect impaired ventral-dorsal stream interactions. NEW & NOTEWORTHY Older adults show declines in vision, decision-making, and motor control, which can lead to functional limitations. We used a rapid visuomotor decision task to examine how these deficits may interact to affect task performance. Compared with healthy young adults, older adults made more errors in both decision-making and motor execution, especially when the task required intercepting moving targets. This suggests that age-related declines in integrating perceptual and motor information may contribute to functional deficits. 
    more » « less
  4. Abstract Age-related reductions in neural selectivity have been linked to cognitive decline. We examined whether age differences in the strength of retrieval-related cortical reinstatement could be explained by analogous differences in neural selectivity at encoding, and whether reinstatement was associated with memory performance in an age-dependent or an age-independent manner. Young and older adults underwent fMRI as they encoded words paired with images of faces or scenes. During a subsequent scanned memory test participants judged whether test words were studied or unstudied and, for words judged studied, also made a source memory judgment about the associated image category. Using multi-voxel pattern similarity analyses, we identified robust evidence for reduced scene reinstatement in older relative to younger adults. This decline was however largely explained by age differences in neural differentiation at encoding; moreover, a similar relationship between neural selectivity at encoding and retrieval was evident in young participants. The results suggest that, regardless of age, the selectivity with which events are neurally processed at the time of encoding can determine the strength of retrieval-related cortical reinstatement. 
    more » « less
  5. Engaging in musical activities throughout the lifespan may protect against age-related cognitive decline and modify structural and functional connectivity in the brain. Prior research suggests that musical experience modulates brain regions that integrate different modalities of sensory information, such as the insula. Most of this research has been performed in individuals classified as professional musicians; however, general musical experiences across the lifespan may also confer beneficial effects on brain health in older adults. The current study investigated whether general musical experience, characterized using the Goldsmith Music Sophistication Index (Gold-MSI), was associated with functional connectivity in older adults (age = 65.7 ± 4.4, n = 69). We tested whether Gold-MSI was associated with individual differences in the functional connectivity of three a priori hypothesis-defined seed regions in the insula (i.e., dorsal anterior, ventral anterior, and posterior insula). We found that older adults with more musical experience showed greater functional connectivity between the dorsal anterior insula and the precentral and postcentral gyrus, and between the ventral anterior insula and diverse brain regions, including the insula and prefrontal cortex, and decreased functional connectivity between the ventral anterior insula and thalamus (voxel p < 0.01, cluster FWE p < 0.05). Follow-up correlation analyses showed that the singing ability subscale score was key in driving the association between functional connectivity differences and musical experience. Overall, our findings suggest that musical experience, even among non-professional musicians, is related to functional brain reorganization in older adults. 
    more » « less