skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Obtaining auxetic and isotropic metamaterials in counterintuitive design spaces: an automated optimization approach and experimental characterization
Abstract Recent advancements in manufacturing, finite element analysis (FEA), and optimization techniques have expanded the design possibilities for metamaterials, including isotropic and auxetic structures, known for applications like energy absorption due to their unique deformation mechanism and consistent behavior under varying loads. However, achieving simultaneous control of multiple properties, such as optimal isotropic and auxetic characteristics, remains challenging. This paper introduces a systematic design approach that combines modeling, FEA, genetic algorithm, and optimization to create tailored mechanical behavior in metamaterials. Through strategically arranging 8 distinct neither isotropic nor auxetic unit cell states, the stiffness tensor in a 5 × 5 × 5 cubic symmetric lattice structure is controlled. Employing the NSGA-II genetic algorithm and automated modeling, we yield metamaterial lattice structures possessing both desired isotropic and auxetic properties. Multiphoton lithography fabrication and experimental characterization of the optimized metamaterial highlights a practical real-world use and confirms the close correlation between theoretical and experimental data.  more » « less
Award ID(s):
2124826 2134534
PAR ID:
10484077
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
10
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Auxetic materials have a negative Poisson’s ratio and are of significant interest in applications that include impact mitigation, membrane separations and biomedical engineering. While there are numerous examples of structured materials that exhibit auxetic behavior, the examples of engineered auxetic structures is largely limited to periodic lattice structures that are limited to directional or anisotropic auxetic response. Structures that exhibit a three-dimensionally isotropic auxetic response have been, unfortunately, slow to evolve. Here we introduce an inverse design algorithm based on global node optimization to design three-dimensional auxetic metamaterial structures from disordered networks. After specifying the target Poisson’s ratio for a structure, an inverse design algorithm is used to adjust the positions of all nodes in a disordered network structure until the desired mechanical response is achieved. The proposed algorithm allows independent control of shear and bulk moduli, while preserving the density and connectivity of the networks. When the angle bending stiffness in the network is kept low, it is possible to realize optimized structures with a Poisson’s ratios as low as −0.6. During the optimization, the bulk modulus of these networks decreases by almost two orders of magnitude, but the shear modulus remains largely unaltered. The materials designed in this manner are fabricated by dual-material 3D-printing, and are found to exhibit the mechanical responses that were originally encoded in the computational design engine. The approach proposed here provides a materials-by-design platform that could be extended for engineering of optical, acoustic, and electrical properties, beyond the design of auxetic metamaterials. 
    more » « less
  2. Abstract For artificial materials, desired properties often conflict. For example, engineering materials often achieve high energy dissipation by sacrificing resilience and vice versa, or desired auxeticity by losing their isotropy, which limits their performance and applications. To solve these conflicts, a strategy is proposed to create novel mechanical metamaterial via 3D space filling tiles with engaging key‐channel pairs, exemplified via auxetic 3D keyed‐octahedron–cuboctahedron metamaterials. This metamaterial shows high resilience while achieving large mechanical hysteresis synergistically under large compressive strain. Especially, this metamaterial exhibits ideal isotropy approaching the theoretical limit of isotropic Poisson's ratio, ‐1, as rarely seen in existing 3D mechanical metamaterials. In addition, the new class of metamaterials provides wide tunability on mechanical properties and behaviors, including an unusual coupled auxeticity and twisting behavior under normal compression. The designing methodology is illustrated by the integral of numerical modeling, theoretical analysis, and experimental characterization. The new mechanical metamaterials have broad applications in actuators and dampers, soft robotics, biomedical materials, and engineering materials/systems for energy dissipation. 
    more » « less
  3. Shape‐morphing capabilities of metamaterials can be expanded by developing approaches that enable the integration of different types of cellular structures. Herein, a rational material design process is presented that fits together auxetic (anti‐tetrachiral) and non‐auxetic (the novel nodal honeycomb) lattice structures with a shared grid of nodes to obtain desired values of Poisson's ratios and Young's moduli. Through this scheme, deformation properties can be easily set piece by piece and 3D printed in useful combinations. For example, such nodally integrated tubular lattice structures undergo worm‐like peristalsis or snake‐like undulations that result in faster speeds than the monophasic counterpart in narrow channels and in wider channels, respectively. In a certain scenario, the worm‐like hybrid metamaterial structure traverses between confined spaces that are otherwise impassable for the isotropic variant. These deformation mechanisms allow us to design shape‐morphing structures into customizable soft robot skins that have improved performance in confined spaces. The presented analytical material design approach can make metamaterials more accessible for applications not only in soft robotics but also in medical devices or consumer products. 
    more » « less
  4. Biomimetic and Bioinspired designs have been investigated due to the advances in modeling, mechanics and experimental characterization of structural features of living organisms. To accomplish bioinspiration for fields such as robotics, adhesives and smart materials, it is required to comprehend how Nature accomplished enhanced mechanical behavior. Among the plethora of complex organisms spanning at different lengthscales, the deep sea sponge Euplectella Aspergillum has been of particular interest due to its lattice structure that can be the framework to design mechanical metamaterials. However, despite its intriguing morphology, constraints in the fabrication and modeling of scalable and nonuniform materials has hindered the study of its mechanical performance and how to harness it. Moreover, a comprehensive FEA model that encompasses the whole spectrum of its constitutive and structural performance has not been reported. In this study, it is aimed to characterize and model the mechanical behavior of this sponge from a structural standpoint. Utilizing various experimental techniques, an FEA mechanical model is developed to study the nonlinear buckling analysis of the sponge’s lattice structure and its resilience to failure. Finally, through topology optimization and sensitivity analysis, a new mechanical metamaterial is proposed. Our results elucidate how mechanical characterization and FEA modeling can be employed for a deeper understanding of Nature’s tailored hierarchy and the design of metamaterials. 
    more » « less
  5. This investigation explores novel two‐phase chevron mechanical metamaterials that exhibit auxetic properties. Unlike traditional foam‐like cellular or porous auxetic materials, these designs are composed of chevron patterned layers embedded in anisotropic matrix. This innovation design allows for auxeticity in two orthogonal in‐plane directions (bi‐auxeticity) or in all in‐plane directions (complete auxeticity), providing not only a general strategy but also detailed guidelines for designing non‐porous auxetic mechanical metamaterials with tunable auxetic behaviors. One goal of this work is to explore the mechanical behavior, specifically effective stiffness and Poisson's ratio, of these new designs and to identify the design space for auxetic behavior using numerical and experimental methods. Systematic finite element (FE) simulations are conducted using ABAQUS and Python scripts to quantify effective stiffness and Poisson's ratio within a small strain range. To validate the numerical predictions, three representative designs are selected and fabricated via multi‐material polymer jetting. Uniaxial tension experiments are conducted on these specimens. Design spaces for non‐auxeticity, partial‐auxeticity, and complete auxeticity are identified through an integrated numerical approach. Theoretical criteria for determining the completeness of auxeticity are proposed and verified via FE simulations. 
    more » « less