skip to main content


Search for: All records

Award ID contains: 2021880

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate change is increasing aridity in grassland and desert habitats across the southwestern United States, reducing available resources and drastically changing the breeding habitat of many bird species. Increases in aridity reduce sound propagation distances, potentially impacting habitat soundscapes, and could lead to a breakdown of the avian soundscapes in the form of loss of vocal culture, reduced mating opportunities, and local population extinctions. We developed an agent‐based model to examine how changes in aridity will affect both sound propagation and the ability of territorial birds to audibly contact their neighbors. We simulated vocal signal attenuation under a variety of environmental scenarios for the south, central semi‐arid prairies of the United States, ranging from contemporary weather conditions to predicted droughts under climate change. We also simulated how changes in physiological conditions, mainly evaporative water loss (EWL), would affect singing behavior. Under contemporary and climate change‐induced drought conditions, we found that significantly fewer individuals successfully contacted all adjacent neighbors than did individuals in either the contemporary or predicted climate change conditions. We also found that at higher sound frequencies and higher EWL, fewer individuals were able to successfully contact all their neighbors, particularly in drought and climate change drought conditions. These results indicate that climate change‐mediated aridification may alter the avian soundscape, such that vocal communication no longer effectively functions for mate attraction or territorial defense. As climate change progresses, increased aridity in current grasslands may favor shifts toward low‐frequency songs, colonial resource use, and altered songbird community compositions.

     
    more » « less
  2. Addressing climate change and biodiversity loss will be the defining ecological, political, and humanitarian challenge of our time. Alarmingly, policymakers face a narrowing window of opportunity to prevent the worst impacts, necessitating complex decisions about which land to set aside for biodiversity preservation. Yet, our ability to make these decisions is hindered by our limited capacity to predict how species will respond to synergistic drivers of extinction risk. We argue that a rapid integration of biogeography and behavioral ecology can meet these challenges because of the distinct, yet complementary levels of biological organization they address, scaling from individuals to populations, and from species and communities to continental biotas. This union of disciplines will advance efforts to predict biodiversity’s responses to climate change and habitat loss through a deeper understanding of how biotic interactions and other behaviors modulate extinction risk, and how responses of individuals and populations impact the communities in which they are embedded. Fostering a rapid mobilization of expertise across behavioral ecology and biogeography is a critical step toward slowing biodiversity loss. 
    more » « less
  3. Ecologists and evolutionary biologists are increasingly cognizant of rapid adaptation in wild populations. Rapid adaptation to anthropogenic environmental change is critical for maintaining biodiversity and ecosystems services into the future. Anthropogenic salinization of freshwater ecosystems is quickly emerging as a primary threat, which is well documented in the northern temperate ecoregion. Specifically, many northern temperate lakes have undergone extensive salinization because of urbanization and the associated increase in impervious surfaces causing runoff, and the extensive use of road deicing salts (e.g., NaCl). It remains unclear whether increasing salinization will lead to extirpation of species from these systems. Using a “resurrection genomics” approach, we investigated whether the keystone aquatic herbivore,Daphnia pulicaria,has evolved increased salinity tolerance in a severely salinized lake located in Minnesota, USA. Whole-genome resequencing of 54Daphniaclones from the lake and hatched from resting eggs that represent a 25-y temporal contrast demonstrates that many regions of the genome containing genes related to osmoregulation are under selection in the study population. Tolerance assays of clones revealed that the most recent clones are more tolerant to salinity than older clones; this pattern is concomitant with the temporal pattern of stabilizing salinity in this lake. Together, our results demonstrate that keystone species such asDaphniacan rapidly adapt to increasing freshwater salinization. Further, our results indicate that rapid adaptation to salinity may allow lakeDaphniapopulations to persist in the face of anthropogenic salinization maintaining the food webs and ecosystem services they support despite global environmental change.

     
    more » « less
  4. The study of animal personality is a growing field that has applications for welfare of animals living in captive settings. We measured personality traits (activity, exploration, and neophobia) in Texas horned lizards (Phrynosoma cornutum) living in human care before they were released to their natal habitat as part of a headstart program. We found evidence of consistent inter-individual differences in activity and exploration, but not neophobia. We also identified a positive correlation between activity and exploration, such that more active lizards were also more likely to explore a novel environment. These results suggest that Texas horned lizards have individual differences in response to their environment, which can inform husbandry decisions. Extensions of this work could also have implications for conservation of Texas horned lizards and for headstart programs focused on reptiles. 
    more » « less