skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Formalizing and Reasoning About Supply Chain Contracts Between Agents
Inspired by the recent problems in supply chains, we propose an approach to declarative modeling of contracts between agents that will eventually support reasoning about resilience of and about ways to improve supply chains. Specifically, we present a high-level language for specifying and reasoning about contracts over action domains of agents. We assume that the behavior of the agents can be formally expressed through action theories and view a contract as a collection of constraints. Each constraint specifies the responsibility of an agent to achieve a certain result by a deadline. Each agent also has a mapping between constraints and the agent’s concerns, i.e. issues that the agent is concerned about, which are modeled in accordance with the CPS Framework proposed by the National Institute of Standards and Technology. We discuss how common questions related to the fulfillment of a contract or the concerns of the agents can be answered and computed via Answer Set Programming.  more » « less
Award ID(s):
1812628
PAR ID:
10484188
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Proceedings of the 25th International Symposium Practical Aspects on Declarative Languages -
Volume:
13800
Page Range / eLocation ID:
144-160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In multi-agent domains (MADs), an agent's action may not just change the world and the agent's knowledge and beliefs about the world, but also may change other agents' knowledge and beliefs about the world and their knowledge and beliefs about other agents' knowledge and beliefs about the world. The goals of an agent in a multi-agent world may involve manipulating the knowledge and beliefs of other agents' and again, not just their knowledge/belief about the world, but also their knowledge about other agents' knowledge about the world. Our goal is to present an action language (mA+) that has the necessary features to address the above aspects in representing and RAC in MADs. mA+ allows the representation of and reasoning about different types of actions that an agent can perform in a domain where many other agents might be present -- such as world-altering actions, sensing actions, and announcement/communication actions. It also allows the specification of agents' dynamic awareness of action occurrences which has future implications on what agents' know about the world and other agents' knowledge about the world. mA+ considers three different types of awareness: full-, partial- awareness, and complete oblivion of an action occurrence and its effects. This keeps the language simple, yet powerful enough to address a large variety of knowledge manipulation scenarios in MADs. The semantics of mA+ relies on the notion of state, which is described by a pointed Kripke model and is used to encode the agent's knowledge and the real state of the world. It is defined by a transition function that maps pairs of actions and states into sets of states. We illustrate properties of the action theories, including properties that guarantee finiteness of the set of initial states and their practical implementability. Finally, we relate mA+ to other related formalisms that contribute to RAC in MADs. 
    more » « less
  2. In open agent systems, the set of agents that are cooperating or competing changes over time and in ways that are nontrivial to predict. For example, if collaborative robots were tasked with fighting wildfires, they may run out of suppressants and be temporarily unavailable to assist their peers. We consider the problem of planning in these contexts with the additional challenges that the agents are unable to communicate with each other and that there are many of them. Because an agent's optimal action depends on the actions of others, each agent must not only predict the actions of its peers, but, before that, reason whether they are even present to perform an action. Addressing openness thus requires agents to model each other's presence, which becomes computationally intractable with high numbers of agents. We present a novel, principled, and scalable method in this context that enables an agent to reason about others' presence in its shared environment and their actions. Our method extrapolates models of a few peers to the overall behavior of the many-agent system, and combines it with a generalization of Monte Carlo tree search to perform individual agent reasoning in many-agent open environments. Theoretical analyses establish the number of agents to model in order to achieve acceptable worst case bounds on extrapolation error, as well as regret bounds on the agent's utility from modeling only some neighbors. Simulations of multiagent wildfire suppression problems demonstrate our approach's efficacy compared with alternative baselines. 
    more » « less
  3. Aldrich, Jonathan; Silva, Alexandra (Ed.)
    Contract systems enable programmers to state specifications and have them enforced at run time. First-order contracts are expressed using ordinary code, while higher-order contracts are expressed using the notation familiar from type systems. Most interface descriptions, though, come with properties that involve not just assertions about single method calls, but entire call chains. Typical contract systems cannot express these specifications concisely. Such specifications demand domain-specific notations. In response, this paper proposes that contract systems abstract over the notation used for stating specifications. It presents an architecture for such a system, some illustrative examples, and an evaluation in terms of common notations from the literature. 
    more » « less
  4. Guruswami, Venkatesan (Ed.)
    We study two recent combinatorial contract design models, which highlight different sources of complexity that may arise in contract design, where a principal delegates the execution of a costly project to others. In both settings, the principal cannot observe the choices of the agent(s), only the project’s outcome (success or failure), and incentivizes the agent(s) using a contract, a payment scheme that specifies the payment to the agent(s) upon a project’s success. We present results that resolve open problems and advance our understanding of the computational complexity of both settings. In the multi-agent setting, the project is delegated to a team of agents, where each agent chooses whether or not to exert effort. A success probability function maps any subset of agents who exert effort to a probability of the project’s success. For the family of submodular success probability functions, Dütting et al. [2023] established a poly-time constant factor approximation to the optimal contract, and left open whether this problem admits a PTAS. We answer this question on the negative, by showing that no poly-time algorithm guarantees a better than 0.7-approximation to the optimal contract. For XOS functions, they give a poly-time constant approximation with value and demand queries. We show that with value queries only, one cannot get any constant approximation. In the multi-action setting, the project is delegated to a single agent, who can take any subset of a given set of actions. Here, a success probability function maps any subset of actions to a probability of the project’s success. Dütting et al. [2021a] showed a poly-time algorithm for computing an optimal contract for gross substitutes success probability functions, and showed that the problem is NP-hard for submodular functions. We further strengthen this hardness result by showing that this problem does not admit any constant factor approximation. Furthermore, for the broader class of XOS functions, we establish the hardness of obtaining a n^{-1/2+ε}-approximation for any ε > 0. 
    more » « less
  5. Securing blockchain smart contracts is difficult, especially when they interact with one another. Existing tools for reasoning about smart contract security are limited in one of two ways: they either cannot analyze cooperative interaction between contracts, or they require all interacting code to be written in a specific language. We propose an approach based on information flow control~(IFC), which supports fine-grained, compositional security policies and rules out dangerous vulnerabilities. However, existing IFC systems provide few guarantees on interaction with legacy contracts and unknown code. We extend existing IFC constructs to support these important functionalities while retaining compositional security guarantees, including reentrancy control. We mix static and dynamic mechanisms to achieve these goals in a flexible manner while minimizing run-time costs. 
    more » « less