skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PACE: Providing Authentication through Computational Gait Evaluation with Deep learning
This research presents PACE (Providing Authentication through Computational Gait Evaluation), a novel methodology for gait-based authentication leveraging the power of deep learning algorithms. The primary objective of PACE is to enhance the security and efficiency of user authentication mechanisms by capitalizing on the unique gait patterns exhibited by individuals. This study delineates the development and implementation of a deep learning model, which was trained on a set of extracted features. These features, including mean, variance, standard deviation, kurtosis, and skewness, were derived from accelerometer and gyroscope data, serving as descriptors of users' gait patterns for the deep learning model. The model's performance was evaluated based on its ability to classify and authenticate users accurately using these features. For the purpose of this study, twelve participants were enlisted, with sensors affixed to their back hip and right ankle to collect the requisite accelerometer and gyroscope data. The experimental results were highly promising, with the model achieving an exceptional accuracy rate of 99% in authenticating users. These findings underscore the potential of PACE as a viable alternative to conventional machine learning methods for gait authentication. The implications of this research are far-reaching, with potential applications spanning a multitude of scenarios where security is of paramount importance.  more » « less
Award ID(s):
2308741
PAR ID:
10484375
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Journal Name:
MobiHoc '23: Proceedings of the Twenty-fourth International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing
ISBN:
9781450399265
Page Range / eLocation ID:
442 to 446
Format(s):
Medium: X
Location:
Washington DC USA
Sponsoring Org:
National Science Foundation
More Like this
  1. While machine learning models perform well on offline data, assessing their performance in real-world, resource-constrained environments-considering accuracy, prediction time, power consumption, and memory usage-is crucial for practical applications. This research implements a mobile-based Human Activity Recognition solution to classify three postures-sitting, standing, and walking-using smartphone sensors, specifically accelerometer, gyroscope, and magnetometer. Time-domain features extracted from these sensors were used, with Random Forest employed for feature selection. One traditional machine learning model, Logistic Regression, and one deep learning model, Convolutional Neural Network, were trained and deployed via an Android application for real-time evaluation. While the Convolutional Neural Network achieved higher accuracy and better memory efficiency, Logistic Regression demonstrated faster prediction times during real-time use. Both models showed reduced accuracy for standing and walking postures in real-world conditions, emphasizing the challenges of deploying machine learning models in dynamic environments. This study highlights the importance of evaluating machine learning models in real-world settings to ensure reliability and efficiency, particularly in resource-constrained environments. 
    more » « less
  2. The ubiquity of mobile devices nowadays necessitates securing the apps and user information stored therein. However, existing one-time entry-point authentication mechanisms and enhanced security mechanisms such as Multi-Factor Authentication (MFA) are prone to a wide vector of attacks. Furthermore, MFA also introduces friction to the user experience. Therefore, what is needed is continuous authentication that once passing the entry-point authentication, will protect the mobile devices on a continuous basis by confirming the legitimate owner of the device and locking out detected impostor activities. Hence, more research is needed on the dynamic methods of mobile security such as behavioral biometrics-based continuous authentication, which is cost-effective and passive as the data utilized to authenticate users are logged from the phone's sensors. However, currently, there are not many mobile authentication datasets to perform benchmarking research. In this work, we share two novel mobile datasets (Clarkson University (CU) Mobile datasets I and II) consisting of multi-modality behavioral biometrics data from 49 and 39 users respectively (88 users in total). Each of our datasets consists of modalities such as swipes, keystrokes, acceleration, gyroscope, and pattern-tracing strokes. These modalities are collected when users are filling out a registration form in sitting both as genuine and impostor users. To exhibit the usefulness of the datasets, we have performed initial experiments on selected individual modalities from the datasets as well as the fusion of simultaneously available modalities. 
    more » « less
  3. Monitoring human gait is essential to quantify gait issues associated with fall-prone individuals as well as other gait-related movement disorders. Being portable and cost-effective, ambulatory gait analysis using inertial sensors is considered a promising alternative to traditional laboratory-based approach. The current study aimed to provide a method for predicting the spatio-temporal gait parameters using the wrist-worn inertial sensors. Eight young adults were involved in a laboratory study. Optical motion analysis system and force-plates were used for the assessment of baseline gait parameters. Spatio-temporal features of an Inertial Measurement Unit (IMU) on the wrist were analyzed. Multi-variate correlation analyses were performed to develop gait parameter prediction models. The results indicated that gait stride time was strongly correlated with peak-to-peak duration of wrist gyroscope signal in the anterio-posterior direction. Meanwhile, gait stride length was successfully predicted using a combination model of peak resultant wrist acceleration and peak sagittal wrist angle. In conclusion, current study provided the evidence that the wrist-worn inertial sensors are capable of estimating spatio-temporal gait parameters. This finding paves the foundation for developing a wrist-worn gait monitor with high user compliance. 
    more » « less
  4. Identity authentication based on Doppler radar respiration sensing is gaining attention as it requires neither contact nor line of sight and does not give rise to privacy concerns associated with video imaging. Prior research demonstrating the recognition of individuals has been limited to isolated single subject scenarios. When two equidistant subjects are present, identification is more challenging due to the interference of respiration motion patterns in the reflected radar signal. In this research, respiratory signature separation techniques are functionally combined with machine learning (ML) classifiers for reliable subject identity authentication. An improved version of the dynamic segmentation algorithm (peak search and triangulation) was proposed, which can extract distinguishable airflow profile-related features (exhale area, inhale area, inhale/exhale speed, and breathing depth) for medium-scale experiments of 20 different participants to examine the feasibility of extraction of an individual’s respiratory features from a combined mixture of motions for subjects. Independent component analysis with the joint approximation of diagonalization of eigenmatrices (ICA-JADE) algorithm was employed to isolate individual respiratory signatures from combined mixtures of breathing patterns. The extracted hyperfeature sets were then evaluated by integrating two different popular ML classifiers, k-nearest neighbor (KNN) and support vector machine (SVM), for subject authentication. Accuracies of 97.5% for two-subject experiments and 98.33% for single-subject experiments were achieved, which supersedes the performance of prior reported methods. The proposed identity authentication approach has several potential applications, including security/surveillance, the Internet-of- Things (IoT) applications, virtual reality, and health monitoring. 
    more » « less
  5. null (Ed.)
    User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore, a transfer-learning-based mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through different activities. 
    more » « less