skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zombie: Middleboxes that Don’t Snoop
Abstract. Zero-knowledge middleboxes (ZKMBs) are a recent paradigm in which clients get privacy while middleboxes enforce policy: clients prove in zero knowledge that the plaintext underlying their encrypted traffic complies with network policies, such as DNS filtering. However, prior work had impractically poor performance and was limited in functionality. This work presents Zombie, the first system built using the ZKMB paradigm. Zombie introduces techniques that push ZKMBs to the verge of practicality: preprocessing (to move the bulk of proof generation to idle times between requests), asynchrony (to remove proving and verifying costs from the critical path), and batching (to amortize some of the verification work). Zombie’s choices, together with these techniques, reduce client and middlebox overhead by ≈ 3.5×, lowering the critical path overhead for a DNS filtering application on commodity hardware to less than 300ms or, in the asynchronous configuration, to 0. As an additional contribution that is likely of independent interest, Zombie introduces a portfolio of techniques to encode regular expressions in probabilistic (and zeroknowledge) proofs. These techniques significantly improve performance over a standard baseline, asymptotically and concretely. Zombie builds on this portfolio to support policies based on regular expressions, such as data loss prevention.  more » « less
Award ID(s):
2236784
PAR ID:
10484408
Author(s) / Creator(s):
Publisher / Repository:
USENIX
Date Published:
Journal Name:
design and implementation of networked systems (NSDI)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Distributed Denial-of-Service (DDoS) attacks exhaust resources, leaving a server unavailable to legitimate clients. The Domain Name System (DNS) is a frequent target of DDoS attacks. Since DNS is a critical infrastructure service, protecting it from DoS is imperative. Many prior approaches have focused on specific filters or anti-spoofing techniques to protect generic services. DNS root nameservers are more challenging to protect, since they use fixed IP addresses, serve very diverse clients and requests, receive predominantly UDP traffic that can be spoofed, and must guarantee high quality of service. In this paper we propose a layered DDoS defense for DNS root nameservers. Our defense uses a library of defensive filters, which can be optimized for different attack types, with different levels of selectivity. We further propose a method that automatically and continuously evaluates and selects the best combination of filters throughout the attack. We show that this layered defense approach provides exceptional protection against all attack types using traces of ten real attacks from a DNS root nameserver. Our automated system can select the best defense within seconds and quickly reduces traffic to the server within a manageable range, while keeping collateral damage lower than 2%. We can handle millions of filtering rules without noticeable operational overhead. 
    more » « less
  2. Distributed Denial-of-Service (DDoS) attacks exhaust resources, leaving a server unavailable to legitimate clients. The Domain Name System (DNS) is a frequent target of DDoS attacks. Since DNS is a critical infrastructure service, protecting it from DoS is imperative. Many prior approaches have focused on specific filters or anti-spoofing techniques to protect generic services. DNS root nameservers are more challenging to protect, since they use fixed IP addresses, serve very diverse clients and requests, receive predominantly UDP traffic that can be spoofed, and must guarantee high quality of service. In this paper we propose a layered DDoS defense for DNS root nameservers. Our defense uses a library of defensive filters, which can be optimized for different attack types, with different levels of selectivity. We further propose a method that automatically and continuously evaluates and selects the best combination of filters throughout the attack. We show that this layered defense approach provides exceptional protection against all attack types using traces of ten real attacks from a DNS root nameserver. Our automated system can select the best defense within seconds and quickly reduces traffic to the server within a manageable range, while keeping collateral damage lower than 2%. We show our system can successfully mitigate resource exhaustion using replay of a real-world attack. We can handle millions of filtering rules without noticeable operational overhead. 
    more » « less
  3. Existing campus network infrastructure is not designed to effectively handle the transmission of big data sets. Performance degradation in these networks is often caused by middleboxes -- appliances that enforce campus-wide policies by deeply inspecting all traffic going through the network (including big data transmissions). We are developing a Software-Defined Networking (SDN) solution for our campus network that grants privilege to science flows by dynamically calculating routes that bypass certain middleboxes to avoid the bottlenecks they create. Using the global network information provided by an SDN controller, we are developing graph databases approaches to compute custom paths that not only bypass middleboxes to achieve certain requirements (e.g., latency, bandwidth, hop-count) but also insert rules that modify packets hop-by-hop to create the illusion of standard routing/forward despite the fact that packets are being rerouted. In some cases, additional functionality needs to be added to the path using network function virtualization (NFV) techniques (e.g., NAT). To ensure that path computations are run on an up-to-date snapshot of the topology, we introduce a versioning mechanism that allows for lazy topology updates that occur only when "important" network changes take place and are requested by big data flows. 
    more » « less
  4. Federated Learning (FL) has pioneered the idea of share wisdom not raw data to enable collaborative learning over decentralized data. FL achieves this goal by averaging model parameters instead of centralizing data. However, representing wisdom in the form of model parameters has its own limitations including the requirement for uniform model architectures across clients and communication overhead proportional to model size.In this work we introduce Co-Dream a framework for representing wisdom in data space instead of model parameters. Here, clients collaboratively optimize random inputs based on their locally trained models and aggregate gradients of their inputs. Our proposed approach overcomes the aforementioned limitations and comes with additional benefits such as adaptive optimization and interpretable representation of knowledge. We empirically demonstrate the effectiveness of Co-Dream and compare its performance with existing techniques. 
    more » « less
  5. Regular expressions are commonly used for finding and extracting matches from sequence data. Due to the inherent ambiguity of regular expressions, a disambiguation policy must be considered for the match extraction problem, in order to uniquely determine the desired match out of the possibly many matches. The most common disambiguation policies are the POSIX policy and the greedy (PCRE) policy. The POSIX policy chooses the longest match out of the leftmost ones. The greedy policy chooses a leftmost match and further disambiguates using a greedy interpretation of Kleene iteration to match as many times as possible. The choice of disambiguation policy can affect the output of match extraction, which can be an issue for reusing regular expressions across regex engines. In this paper, we introduce and study the notion of disambiguation robustness for regular expressions. A regular expression is robust if its extraction semantics is indifferent to whether the POSIX or greedy disambiguation policy is chosen. This gives rise to a decision problem for regular expressions, which we prove to be PSPACE-complete. We propose a static analysis algorithm for checking the (non-)robustness of regular expressions and two performance optimizations. We have implemented the proposed algorithms and we have shown experimentally that they are practical for analyzing large datasets of regular expressions derived from various application domains. 
    more » « less